Skip to main content
Log in

Viscoelastic dynamics of polymer thin films and surfaces

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The strain relaxation behavior in a viscoelastic material, such as a polymer melt, may be strongly affected by the proximity of a free surface or mobile interface. In this paper, the viscoelastic surface modes of the material are discussed with respect to their possible influence on the freezing temperature and dewetting morphology of thin polymer films. In particular, the mode spectrum is connected with mode coupling theory assuming memory effects in the melt. Based on the idea that the polymer freezes due to these memory effects, surface melting is predicted. As a consequence, the substantial shift of the glass transition temperature of thin polymer films with respect to the bulk is naturally explanied. The experimental findings of several independent groups can be accounted for quantitatively, with the elastic modulus at the glass transition temperature as the only fitting parameter. Finally, a simple model is put forward which accounts for the occurrence of certain generic dewetting morphologies in thin liquid polymer films. It demonstrates that by taking into account the viscoelastic properties of the film, a morphological phase diagram may be derived which describes the observed structures of dewetting fronts. It is demonstrated that dewetting morphologies may also serve to determine nanoscale rheological properties of liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Doi, S.F. Edwards, Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).

  2. P.-G. de Gennes, Scaling Concepts in Polymer Physics, 4th edition (Cornell Univirsity Press, Ithaca, NY, 1991).

  3. G. Strobl, The Physics of Polymers (Springer, Berlin, 1996).

  4. N.F. Fatkullin, R. Kimmich, M. Kroutieva, J. Exp. Theor. Phys. 91, 150 (2000).

    Article  Google Scholar 

  5. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Vol. VII (Butterworth, London, 1995).

  6. L. Landau, E.M. Lifshitz, Hydrodynamics, Vol. VI (Butterworth, London, 1995).

  7. S. Herminghaus, Eur. Phys. J. E 8, 237 (2002).

    Google Scholar 

  8. H. Kim, Phys. Rev. Lett. 90, 068302 (2003).

    Article  Google Scholar 

  9. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    Google Scholar 

  10. J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000).

  11. J. Mattsson, J.A. Forrest, L. Börgesson, Phys. Rev. E 62, 5187 (2000).

    Article  Google Scholar 

  12. P.-G. de Gennes, Europ. Phys. J. E 2, 201 (2000).

    Article  Google Scholar 

  13. K. Dalnoki-Veress, J.A. Forrest, P.-G. de Gennes, J.R. Dutcher, J. Phys. (Paris) 10, 221 (2000).

    Google Scholar 

  14. D. Long, Eur. Phys. J. E 8, 245 (2002).

    Google Scholar 

  15. J. Baschnagel, Eur. Phys. J. E 8, 247 (2002).

    Google Scholar 

  16. P.-G. de Gennes, C. R. Acad. Sci. Paris 1/IV, 1179 (2000).

  17. S. Herminghaus, K. Jacobs, R. Seemann, Eur. Phys. J. E, 5, 531 (2001).

    Google Scholar 

  18. J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  Google Scholar 

  19. J.A. Torres, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 85, 3221 (2000).

    Article  Google Scholar 

  20. J.A. Forrest, The role of free surfaces in the glass transition in thin films, oral presentation at this workshop.

  21. W. Götze, L. Sjögren, Rep. Prog. Phys. 55, 241 (1992).

    Article  Google Scholar 

  22. W. Götze, Th. Voigtmann, Phys. Rev. E 61, 4133 (2000).

    Article  Google Scholar 

  23. W. Götze, L. Sjögren, J. Math. Anal. Appl. 195, 230 (1995).

    Article  MathSciNet  Google Scholar 

  24. The memory kernel discussed here is conceptually different from the memory function of stress, as discussed, e.g., in the context of Lodge liquids [3].

  25. P.E. Rouse, J. Chem. Phys. 21, 1272 (1953).

    Google Scholar 

  26. G. Ronca, J. Chem. Phys. 79, 1031 (1983).

    Article  Google Scholar 

  27. It should be noted, however, that the equation derived by Ronca is not a mode coupling equation per se. Its memory kernel depends explicitly on time, whereas in mode coupling theory, it depends on time only via \({\phi}(t)\). It is not clear yet whether this difference is essential in the case of strain fields.

  28. J.H. Kim, J. Jang, W.-Ch. Zin, Langmuir 16, 4064 (2000), and references therein.

    Article  Google Scholar 

  29. G. Eckert, PhD Thesis, University of Ulm (1997).

  30. O.K. Tsui, T.P. Russell, C.J. Hawker, Macromolecules 34, 5535 (2001).

    Article  Google Scholar 

  31. D.S. Fryer, Macromolecules 34, 5627 (2001).

    Article  Google Scholar 

  32. J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994).

    Google Scholar 

  33. J.L. Keddie, R.A.L. Jones, J. Isr. Chem. Soc. 35, 21 (1995).

    Google Scholar 

  34. J.H. van Zanten, W.E. Wallace, W. Wu, Phys. Rev. E 53, R2053 (1996).

  35. D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000).

    Article  Google Scholar 

  36. Jae Hyun Kim, Jyongsik Jang, Wang-Cheol Zin, Langmuir 17, 2703 (2001).

    Google Scholar 

  37. D.J. Srolovitz, S.A. Safran, J. Appl. Phys. 60, 247 (1986).

    Article  Google Scholar 

  38. C. Redon, F. Brochard-Wyart, F. Rondelez, Phys. Rev. Lett. 66, 715 (1991).

    Article  Google Scholar 

  39. G. Reiter, Phys. Rev. Lett. 68, 75 (1992).

    Article  Google Scholar 

  40. K. Jacobs, Thesis, University of Konstanz (1996) ISBN 3-930803-10-0.

  41. P. Lambooy, K.C. Phelan, O. Haugg, G. Krausch, Phys. Rev. Lett. 76, 1110 (1996).

    Article  Google Scholar 

  42. T.G. Stange, D.F. Evans, W.A. Hendrickson, Langmuir 13, 4459 (1997).

    Article  Google Scholar 

  43. S. Herminghaus, Science 282, 916 (1998).

    Article  Google Scholar 

  44. J. Moriarty, L. Schwartz, E. Tuck, Phys. Fluids A 3, 733 (1991).

    Article  MATH  Google Scholar 

  45. H. Greenspan, J. Fluid Mech. 84, 125 (1978).

    MATH  Google Scholar 

  46. S. Troian, E. Herbolzheimer, S. Safran, J.F. Joanny, Europhys. Lett. 10, 25 (1989).

    Google Scholar 

  47. M. Spaid, G. Homsy, J. Non-Newt. Fluid Mech. 55, 249 (1994).

    Article  Google Scholar 

  48. M.A. Spaid, G.M. Homsy, Phys. Fluids 8, 460 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  49. G. Reiter, Phys. Rev. Lett. 87, 186101 (2001).

    Article  Google Scholar 

  50. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 87, 196101 (2001).

    Google Scholar 

  51. K. Jacobs, R. Seemann, G. Schatz, S. Herminghaus, Langmuir 14, 4961 (1998).

    Article  Google Scholar 

  52. F. Saulnier, E. Raphaël, P.-G. de Gennes, Phys. Rev. Lett. 88, 196101 (2002).

    Article  Google Scholar 

  53. F. Saulnier, E. Raphaël, P.-G. de Gennes, Phys. Rev. E 66, 061607 (2002).

    Article  Google Scholar 

  54. V. Shenoy, A. Sharma, Phys. Rev. Lett. 88, 236101 (2002).

    Article  Google Scholar 

  55. G. Reiter, P. Auroy, L. Auvray, Macromolecules 29, 2150 (1996).

    Article  Google Scholar 

  56. K. Jacobs, S. Herminghaus, K. Mecke, Langmuir 14, 965 (1998).

    Article  Google Scholar 

  57. D. Podzimek, cond-mat/0105065 (2001).

  58. F. Brochard-Wyart, P.-G. de Gennes, H. Hervert, C. Redon, Langmuir 10, 1566 (1994).

    Google Scholar 

  59. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001).

    Article  Google Scholar 

  60. \(\mathfrak{R} \cdot) \mathrm{and} \mathfrak{I}(\cdot)\) denote the real and the imaginary part of their argument, respectively.

  61. The same result is obtained for surface diffusion kinetics (D.J. Srolovitz, S.A. Safran, J. Appl. Phys. 60, 255 (1986)).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Herminghaus.

Additional information

Received: 1 January 2003, Published online: 14 October 2003

PACS:

47.50. + d Non-Newtonian fluid flows - 68.47.Mn Polymer surfaces - 68.60.Dv Thermal stability; thermal effects

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herminghaus, S., Jacobs, K. & Seemann, R. Viscoelastic dynamics of polymer thin films and surfaces. Eur. Phys. J. E 12, 101–110 (2003). https://doi.org/10.1140/epje/i2003-10044-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10044-4

Keywords

Navigation