Skip to main content
Log in

Variability of Indicators and Processes in Long Structured Phylogenetic Branch of Angiosperms. Part 1. A General Scheme

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

A general pattern of indicators and possible processes in the long structured phylogenetic branch of angiosperms is considered. The notions of the neontological history of evolution, the anisotomy of the phylogenetic process, cryptaffinic taxa and cryptaffinic transition in the angiosperm phylogeny, and the complex structure of phylogenetic branches are discussed. The mechanisms of the macroevolutionary processes in angiosperms are found to be limited by random mutations and selection. The intracellular processes and mechanisms should be the basis of major macroevolutionary transformations. It is emphasized that the manifestation of the studied indices is different in different links of the long structured phylogenetic branch, which requires a differential approach for their study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, O., Paläobiologie und Stammesgeschichte, Jena: Gustav Fischer Verlag, 1925.

    Google Scholar 

  • Ahrendt, L.W.A., Berberis and Mahonia. A taxonomic revision, Bot. J. Linn. Soc., 1961, vol. 57, pp. 1–369.

    Article  Google Scholar 

  • Aleshin, V.V., Phylogeny of invertebrates in terms of molecular data: probable the completion of phylogenetics as a science, Tr. Zool. Inst., Ross. Akad. Nauk, 2013, no. 2, pp. 9–39.

    Google Scholar 

  • APG III: an update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants, Bot. J. Linn. Soc., 2009, vol. 161, pp. 105–121.

  • Avdulov, N.P., Karyo-systematic study of family Gramineae, Tr. Prikl. Bot., Genet. Sel., Prilozh., 1934, vol. 44, pp. 1–352.

    Google Scholar 

  • Berg, L.S., Nomogenez, ili evolyutsiya na osnove zakonomernostei (Nomogenesis or Evolution Determined by Law), St. Petersburg: GIS, 1922.

    Google Scholar 

  • Berg, L.S., Nomogenesis or Evolution Determined by Law, Cambridge, Ma: MIT Press, 1969.

    Google Scholar 

  • Berkhout, B., Grigoriev, A., Bakker, M., and Lukashov, V.V., Codon and amino acid usage in retroviral genomes is consistent with virus-specific nucleotide genomes, AIDS Res. Hum. Retroviruses, 2002, vol. 218, pp. 133–141.

    Article  Google Scholar 

  • Bird, A., DNA methylation and frequency of CpG in animal DNA, Nucleic Acids Res., 1980, vol. 8, pp. 1499–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird, A., DNA methylation patterns and epigenetic memory, Genes Dev., 2002, vol. 16, pp. 6–21.

    Article  CAS  PubMed  Google Scholar 

  • Bouchenak-Khelladi, Y., Salamin, N., Savolainen, V., et al., Large multigene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling, Mol. Phylogen. Evol., 2008, vol. 48, pp. 488–505.

    Article  Google Scholar 

  • Brundin, L.Z., Croizat’s panbiogeography versus phylogenetic biogeography, in Vicariance Biogeography: A Critique, Nelson, G. and Rosen, D., Eds., New York: Columbia Univ. Press, 1981, pp. 94–148.

    Google Scholar 

  • Cardon, L., Burge, C., Claiton, D., and Karlin, S., Pervasive CpG suppression in animal mitochondrial genomes, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, pp. 3799–3803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase, M.W., Fay, M.F., Davey, D.S., et al., Multigene analyses of monocot relationships: a summary, Aliso, 2006, vol. 22, pp. 63–75.

    Article  Google Scholar 

  • Chupov, V.S., Phylogeny and system of orders Liliales and Asparagales, Bot. Zh., 1994, vol. 79, no. 3, pp. 1–12.

    Google Scholar 

  • Chupov, V.S., On possible functional genome differentiation in the course of evolution and some approaches to its study. I. Neontological annals of evolution and its analysis, Tsitologiya, 2001, vol. 43, no. 10, pp. 975–986.

    CAS  Google Scholar 

  • Chupov, V.S., The shape of the lateral phylogenetic branch in plants according to the neontological taxonomic history of evolution, Usp. Sovrem. Biol., 2002, vol. 121, pp. 227–238.

    Google Scholar 

  • Chupov, V.S., Specific evolutionary features of biological species Homo sapiens L., Materialy Vserossiiskoi nauchnoi konferentsii “Futurologicheskii kongress: Budushchee Rossii i mira,” Moskva, 4 iyunya 2010 g. (Proc. All-Russ. Sci. Conf. “Futurological Congress: Future of Russia and the World,” Moscow, June 4, 2010), Moscow: Tsentr Probl. Anal. Gos.-Uprav. Proekt., 2010, pp. 247–257.

    Google Scholar 

  • Chupov, V.S., Dynamics of chromosome number in long structured phylogenetic branch of monocotyledons: A general scheme of karyotype evolution, Biol. Bull. Rev., 2013, vol. 3, no. 6, pp. 456–480.

    Article  Google Scholar 

  • Chupov, V.S., The emergence of subclasses of Alismatidae and Liliidae from the point of view of the concept of the cryptaffine transition, Materialy mezhdunarodnoi konferentsii “Sovremennye problemy evolyutsii i ekologii,” Ul’yanovsk, 7–9 aprelya 2014 g. (Proc. Int. Conf. “Modern Problems of Evolution and Ecology,” Ulyanovsk, April 7–9, 2014), Ulyanovsk: Ul’yanovsk. Gos. Pedagog. Univ., 2014, pp. 162–170.

    Google Scholar 

  • Chupov, V.S., Relationship and reciprocal influence of the theory of biological evolution and global evolutionism, Materialy II mezhdunarodnoi konferentsii “Sovremennye problemy biologicheskoi evolyutsii,” Moskva, 11–14 marta 2014 g. (Proc. II Int. Conf. “Modern Problems of Biological Evolution,” Moscow, March 11–14, 2014), Moscow: Gos. Darvin. Muz., 2015a, pp. 443–447.

    Google Scholar 

  • Chupov, V.S., Analysis of intergeneric boundaries in the phylogenetic sequences Mahonia–Berberis and Vancouveria–Epimedium, Materialy XIV mezhdunarodnoi nauchno-prakticheskoi konferentsii “Problemy botaniki Yuzhnoi Sibiri i Mongolii,” Barnaul, 25–29 maya 2015 g. (Proc. XIV Int. Sci.-Pract. Conf. “Problems of Botany of Southern Siberia and Mongolia,” Barnaul, May 25–29, 2015), Barnaul: Altaisk. Gos. Univ., 2015b, pp. 380–393.

    Google Scholar 

  • Chupov, V.S., The hypothesis of intellectogenesis as an alternative to the random evolutionary process—the tychogenesis (using the analogy method), Biosfera, 2016a, vol. 8, no. 2, pp. 155–163.

    Article  Google Scholar 

  • Chupov, V.S., Analysis of cryptaffine transition between the genera Berberis L. and Mahonia Nuttall (Berberidaceae, Angiospermae), Usp. Sovrem. Biol., 2016b, vol. 136, no. 1, pp. 68–80.

    Google Scholar 

  • Chupov, V.S. and Machs, E.M., Variations in nucleotide composition of the region ITS1–5.8S rDNA–ITS2 in evolutionary advanced and evolutionary static branches of the monocotyledonous plants, Proc. 5th Int. Conf. on Bioinformatics, Genome Regulation, and Structure, Novosibirsk, 2006, vol. 3, pp. 133–137.

    Google Scholar 

  • Chupov, V.S. and Machs, E.M., Nucleotide substitutions in rDNA of evolutionary static angiosperm groups, Biol. Bull. Rev., 2011a, vol. 1, no. 2, pp. 110–124.

    Article  Google Scholar 

  • Chupov, V.S. and Machs, E.M., Saltation in evolution and destiny of species Homo sapiens L., in Problems of Contemporary World Futurology, Yacunin, V.I., Ed., Cambridge: Cambridge Scholar Publ., 2011b, pp. 200–236.

    Google Scholar 

  • Chupov, V.S. and Machs, E.M., Cryptaffine transition in phylogeny of angiosperms, Bot. Zh., 2013, vol. 98, pp. 665–689.

    Google Scholar 

  • Chupov, V.S., Punina, E.O., Machs, E.M., and Rodionov, A.V., Nucleotide composition and CpG and CpNpG content of ITS1, ITS2, and the 5.8S rRNA in representatives of the phylogenetic branches Melanthiales–Liliales and Melanthiales–Asparagales (Angiospermae, Monocotyledones) reflect the specifics of their evolution, Mol. Biol. (Moscow), 2007, vol. 41, no. 5, pp. 737–755.

    CAS  Google Scholar 

  • Chupov, V.S., Machs, E.M., and Rodionov, A.V., Dinucleotide patterns of the rDNA elements as the indicator of the evolutionary level and phylogenetic marker in the branches Melanthiales–Liliales and Melanthiales–Asparagales (Monocotyledones, Angiospermae). I. General methods of the changes in dinucleotide composition, Usp. Sovrem. Biol., 2008a, vol. 128, no. 5, pp. 481–496.

    CAS  Google Scholar 

  • Chupov, V.S., Machs, E.M., and Rodionov, A.V., Dinucleotide patterns of the rDNA elements as the indicator of the evolutionary level and phylogenetic marker in the branches Melanthiales–Liliales and Melanthiales–Asparagales (Monocotyledones, Angiospermae). II. Peculiarity of dinucleotide composition of cryptaffine taxons, Usp. Sovrem. Biol., 2008b, vol. 128, no. 6, pp. 542–552.

    CAS  Google Scholar 

  • Clay, O., Schaffner, W., and Matsuo, K., Periodicity of eight nucleotides in purine distribution around human genomic CpG dinucleotides, Somatic Cell Mol. Genet., 1995, vol. 21, pp. 91–98.

    Article  CAS  Google Scholar 

  • Cronquist, A., An Integrated System of Classification of Flowering Plants, New York: Columbia Univ. Press, 1981.

    Google Scholar 

  • Darwin, Ch., On the Origin of Species by Means of Natural Selection, London: Watt, 1937.

    Google Scholar 

  • Davis, J., Petersen, G., Seberg, O., et al., Are mitochondrial genes useful for the analysis of monocot relationships? Taxon, 2006, vol. 55, pp. 857–870.

    Article  Google Scholar 

  • Ehrendorfer, F., Polyploidy and distribution, in Polyploidy: Biological Relevance, Levis, W., Ed., New York: Plenum, 1980, pp. 45–66.

  • Eldredge, N. and Gould, S.J., Punctuated equilibria: an alternative to phyletic gradualism, in Models in Paleobiology, Schopf, T.J.M., Ed., San Francisco: Freeman Cooper, 1972, pp. 82–115.

    Google Scholar 

  • Elenkin, A.A., Evolution of lower algae and the theory of equivalentogenesis, Mater. Inst. Sporovykh Rast., Glav. Bot. Sada, 1926, vol. 4, pp. 1–26.

    Google Scholar 

  • Escobar, J.S., Glemin, S., and Galter, N., GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eucaryotes, Mol. Biol. Evol., 2011, vol. 28, pp. 2561–2575.

    Article  CAS  PubMed  Google Scholar 

  • Gould, S.J., The Structure of Evolutionary Theory, Cambridge, Ma: Harvard Univ. Press, 2002.

    Google Scholar 

  • Gould, S.J. and Eldredge, N., Punctuated equilibria: the tempo and mode of evolution reconsidered, Paleobiology, 1977, vol. 3, pp. 115–151.

    Article  Google Scholar 

  • GPWG Phylogeny and subfamilial classification of the grasses (Poaceae), Ann. Mo. Bot. Gard., 2001, vol. 88, pp. 373–457.

  • Gromova, E.S. and Khoroshaev, A.V., Prokaryotic DNA methyltransferases: the structure and the mechanism of interaction with DNA, Mol. Biol. (Moscow), 2003, vol. 37, no. 2, pp. 260–272.

    Article  CAS  Google Scholar 

  • Haeckel, E., Natürliche Schöpfungsgeschichte. Gemeinverständliche Wissenschaftliche Vorträge über die Entwicklungslehre im Allgemeinen und Diejenige von Darwin, Goethe und Lamarck im Besonderen, über die Anwendung Derselben auf den Ursprung des Menschen und Andere Damit Zusammenhängende Grundfragen der Naturwissenschaft, Berlin: G. Reimer, 1868.

    Google Scholar 

  • Hendrich, B. and Tweedie, S., The methyl-CpG binding domain and the evolving role of DNA methylation in animals, Trends Genet., 2003, vol. 19, pp. 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Hennig, W., Phylogenetic Systematics, Urbana: Univ. Illinois Press, 1966.

    Google Scholar 

  • Hirabayashi, Y. and Gotoh, Y., Epigenetic control of neural precursor cell fate during development, Nat. Rev. Neurosci., 2010, vol. 11, pp. 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Hubscher, U., Maga, G., and Spadari, S., Eukaryotic DNA polymerases, Ann. Rev. Biochem., 2002, vol. 71, pp. 133–163.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, S., Meyer-Gauen, G., Cerff, R., and Martin, W., Nucleotide distribution in gymnosperm nuclear sequences suggests a model for GC-content change in land-plant nuclear genomes, J. Mol. Evol., 1994, vol. 34, pp. 34–46.

    Google Scholar 

  • King, K., Torres, R., Zentgraf, U., and Hemleben, V., Molecular evolution of the intergenic spacer in the nuclear ribosomal RNA genes of Cucurbitaceae, J. Mol. Evol., 1993, vol. 36, pp. 144–152.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.-D., Kim, S.-H., and Landrum, L.R., Taxonomic and phytogeographic implication from ITS phylogeny in Berberis (Berberidaceae), J. Plant Res., 2004a, vol. 117, pp. 175–182.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y.-D., Kim, S.-H., Kim, C.H., and Jansen, R.K., Phylogeny of Berberidaceae based on sequences of the chloroplast gene ndhF, Biochem. Syst. Ecol., 2004b, vol. 32, pp. 291–301.

    Article  CAS  Google Scholar 

  • Knock, E., Pereira, J., Lombard, P.D., et al., The methyl binding domain 3 nucleosome remodeling and deacetylase complex regulates neural cell fate determination and terminal differentiation in the cerebral cortex, Neural Dev., 2015, vol. 10, pp. 13–20. doi 10.1186/s13064-015-0040-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovarik, A., Matyasek, R., Leitch, A., et al., Variability in CpNpG methylation in higher plant genomes, Gene, 1997, vol. 204, pp. 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Krutyakov, V.M., Eukaryotic error-prone DNA polymerases: the presumed roles in replication, repair, and mutagenesis, Mol. Biol. (Moscow), 2006, vol. 40, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  • Levitinskii, G.A., Karyo- and genotype changes during evolution, in Tsitologiya rastenii. Izbrannye trudy (The Plant Cytology: Selected Works), Moscow: Nauka, 1976, pp. 216–238.

    Google Scholar 

  • Matsuo, K., Clay, O., Takahashi, T., et al., Evidence for erosion of mouse CpG islands during mammalian evolution, Somatic Cell Mol. Genet., 1993, vol. 19, pp. 543–555.

    Article  CAS  Google Scholar 

  • Mazin, A.L. and Vanyushin, B.F., The loss of CpG dinucleotides from DNA. 2. Methylated and non-methylated genes of vertebrates, Mol. Biol. (Moscow), 1987, vol. 21, pp. 552–561.

    CAS  Google Scholar 

  • Mazin, A.L. and Vanyushin, B.F., The loss of CpG dinucleotides from DNA. 5. Traces of “fossil” methylation in the Drosophila genome, Mol. Biol. (Moscow), 1988, vol. 22, pp. 1399–1404.

    CAS  Google Scholar 

  • Moor, G., Abbo, S., Cheung, W., et al., Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases, Genomics, 1993, vol. 15, pp. 472–482.

    Article  Google Scholar 

  • Patrushev, L.I., Ekspressiya genov (Gene Expression), Moscow: Nauka, 2000.

    Google Scholar 

  • Pavlow, A.P., Le cretace inferiore de la Russie et sa faune, Nouv. Mém. Soc. Impér. Nat. Moscou, 1901, vol. 16, no. 3, pp. 1–87.

    Google Scholar 

  • Popov, I.Yu., Ortogenez protiv darvinizma: istoriko-nauchnyi analiz kontseptsii napravlennoi evolyutsii (Ortogenesis against Darwinism: Historical-Scientific Analysis of the Concept of Directed Evolution), St. Petersburg: S.-Peterb. Gos. Univ., 2005.

    Google Scholar 

  • Sanchez-Ken, J.G., Clark, L.G., Kellog, E.A., and Kay, E.E., Reinstatement and emendation of subfamily Micrarioideae (Poaceae), Syst. Bot., 2007, vol. 32, pp. 71–80.

    Article  Google Scholar 

  • Severtsov, A.N., Etyudy po teorii evolyutsii: Individual’noe razvitie i evolyutsiya (Studies on the Theory of Evolution: Individual Development and Evolution), Moscow: Librokom, 2012.

    Google Scholar 

  • Severtsov, A.S., Vvedenie v teoriyu evolyutsii (Introduction to the Theory of Evolution), Moscow: Mosk. Gos. Univ., 1981.

    Google Scholar 

  • Severtsov, A.S., Teoriya evolyutsii (The Theory of Evolution), Moscow: Vlados, 2005.

    Google Scholar 

  • Shatalkin, A.I., Taksonomiya. Osnovaniya, printsipy i pravila (Taxonomy: Principles and Rules), Moscow: KMK, 2012.

    Google Scholar 

  • Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia Univ. Press, 1944.

    Google Scholar 

  • Stebbins, G.L., Chromosomal Evolution in Higher Plants, London: Edward Arnold, 1971.

    Google Scholar 

  • Suslov, V.V. and Kolchanov, N.A., Darwinian evolution and regulatory gene structure, Vavilovskii Zh. Genet. Selekts., 2009, vol. 13, no. 2, pp. 410–431.

    Google Scholar 

  • Takhtadzhan, A.L., Osnovy evolyutsionnoi morfologii pokrytosemennykh (Fundamentals of the Evolutionary Morphology of Angiosperms), Moscow: Nauka, 1964.

    Google Scholar 

  • Takhtadzhan, A.L., Sistema magnoliofitov (A System of Magnoliophytes), Leningrad: Nauka, 1987.

    Google Scholar 

  • Takhtajan, A.L., Evolutionary Trends in Flowering Plants, New York: Columbia Univ. Press, 1991.

    Google Scholar 

  • Thorne, R.A., Phylogenetic classification of the Angiospermae, Evol. Biol., 1976, vol. 9, pp. 35–106.

    Google Scholar 

  • Thorne, R.F. and Reveal, J.L., An updated classification of the class Magnoliopsida (“Angiospermae”), Bot. Rev., 2007, vol. 73, pp. 67–182.

    Article  Google Scholar 

  • Walsh, J., Interaction of selection and biased gene conversion in a multigene family, Proc. Natl. Acad. Sci. U.S.A., 1985, vol. 82, pp. 153–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zherikhin, V.V., Biocoenotic regulation of evolution, Paleontol. Zh., 1986, no. 1, pp. 3–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Chupov.

Additional information

Original Russian Text © V.S. Chupov, 2017, published in Uspekhi Sovremennoi Biologii, 2017, Vol. 137, No. 4, pp. 341–360.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chupov, V.S. Variability of Indicators and Processes in Long Structured Phylogenetic Branch of Angiosperms. Part 1. A General Scheme. Biol Bull Rev 8, 72–88 (2018). https://doi.org/10.1134/S2079086418020032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086418020032

Keywords

Navigation