Skip to main content
Log in

Recombinant strains of Saccharomyces cerevisiae for ethanol production from plant biomass

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Saccharomyces cerevisiae is the most convenient organism widely used for ethanol production from sugars in industry thanks to the high rates of growth and ethanol fermentation and biosynthesis under unaerobic conditions, as well as its tolerance to a high ethanol concentration and low pH level. Lignocellulosic biomass is considered to be the most advantageous source of sugars. The sugar which can be obtained from it is the combination of hexoses and pentoses. However, the S. cerevisiae strains in current use are poorly adapted to the fermentation of pentasaccharides, which make it imperative to optimize the metabolic processes in the currently available bioethanol producers for pentasaccharides utilization. This work reviews the approaches which were currently developed to address this issue using recombinant strains of S. cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, S., Riaz, S., and Jamil, A., Molecular cloning of fungal xylanases: an overview, Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 1, pp. 19–35.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, J.R., Modig, T., Petersson, A., et al., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae, J. Chem. Technol. Biotechnol., 2007, vol. 82, no. 4, pp. 340–349.

    Article  CAS  Google Scholar 

  • Baek, S.H., Kim, S., Lee, K., et al., Cellulosic ethanol production by combination of cellulase-displaying yeast cells, Enzyme Microb. Technol., 2012, vol. 51, no. 6, pp. 366–372.

    Article  CAS  PubMed  Google Scholar 

  • Bera, A., Ho, N., Khan, A., and Sedlak, M., A genetic overhaul of Saccharomyces cerevisiae 424A (LNH-ST) to improve xylose fermentation, J. industrial microbiology biotechnology, 2011, vol. 38, no. 5, pp. 617–626.

    Article  CAS  PubMed  Google Scholar 

  • Çakar, Z., Seker, U., Tamerler, C., et al., Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae, FEMS Yeast Res., 2005, vol. 5, nos. 6–7, pp. 569–578.

    Article  PubMed  Google Scholar 

  • Çakar, Z., Turanli, Y., Alkim, C., and Yilmaz, Ü., Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties, FEMS Yeast Res., 2012, vol. 12, no. 2, pp. 171–182.

    Article  PubMed  Google Scholar 

  • Çelik, E. and Çalik, P., Production of recombinant proteins by yeast cells, Biotechnol. Adv., 2012, vol. 30, no. 5, pp. 1108–1118.

    Article  PubMed  Google Scholar 

  • Chen, X., Meng, K., Shi, P., et al., High-level expression of a novel Penicillium endo-1, 3 (4)-D-glucanase with high specific activity in Pichia pastoris, J. Industr. Microbiol. Biotechnol., 2012, vol. 39, no. 6, pp. 869–876.

    Article  CAS  Google Scholar 

  • Cho, K.M., Yoo, Y.J., and Kang, H.S., δ-integration of endo/exoglucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol, Enzyme Microb. Technol., 1999, vol. 25, no. 1, pp. 23–30.

    Article  CAS  Google Scholar 

  • Deng, X. and Ho, N., Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene, Appl. Biochem. Biotechnol., 1990, vol. 24, no. 1, pp. 193–199.

    Article  PubMed  Google Scholar 

  • Fiaux, J., Xakar, Z.P., Sonderegger, M., et al., Metabolicflux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis, Eukaryotic cell, 2003, vol. 2, no. 1, pp. 170–180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Figueiredo, V., de Mello, V., Reis, V., et al., Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucosexylose blend, Bioresource Technol., 2013, vol. 1, pp. 792–796.

    Article  Google Scholar 

  • Fujii, T., Yu, G., Matsushika, A., et al., Ethanol production from xylo-oligosaccharides by xylose-fermenting Saccharomyces cerevisiae expressing -xylosidase, Biosci. Biotechnol. Biochem., 2011, vol. 75, no. 6, pp. 1140–1146.

    Article  CAS  PubMed  Google Scholar 

  • Geddes, C.C., Nieves, I.U., and Ingram, L.O., Advances in ethanol production, Curr. Opin. Biotechnol., 2011, vol. 22, no. 3, pp. 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Goyal, G., Tsai, S.L., Madan, B., et al., Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome, Microb. Cell Fact., 2011, vol. 10, p. 89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gurgu, L., Polaina, J., and Marin-Navarro, J., Fermentation of cellobiose to ethanol by industrial Saccharomyces strains carrying the β-glucosidase gene (BGL 1) from Saccharomycopsis fibuligera, Bioresource Technol., 2011, vol. 1, no. 8, pp. 5229–5236.

    Article  Google Scholar 

  • Hector, R.E., Qureshi, N., Hughes, S., et al., Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption, Appl. Microbiol. Biotechnol., 2008, vol. 80, no. 4, pp. 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Ilmén, M., Den, HaanR., Brevnova, E., et al., High level secretion of cellobiohydrolases by Saccharomyces cerevisiae, Biotechnol. Biofuels, 2011, vol. 4, p. 30.

    Article  PubMed Central  PubMed  Google Scholar 

  • Inokuma, K., Hasunuma, T., and Kondo, A., Efficient yeast cell surface display of exo-and endo-cellulase using the SED1 anchoring region and its original promoter, Biotechnol. Biofuels, 2014, vol. 7, no. 1, p. 8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jayaram, V., Cuyvers, S., Verstrepen, K., et al., Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties, Food Chem., 2014, vol. 1, pp. 421–428.

    Article  Google Scholar 

  • Karaoglan, M., Yildiz, H., and Inan, M., Screening of signal sequences for extracellular production of Aspergillus niger xylanase in Pichia pastoris, Biochem. Eng. J., 2014.

    Google Scholar 

  • Katahira, S., Fujita, Y., Mizuike, A., et al., Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells, Appl. Environ. Microbiol., 2004, vol. 70, no. 9, pp. 5407–5414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katahira, S., Ito, M., Takema, H., et al., Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1, Enzyme Microb. Technol., 2008, vol. 43, no. 2, pp. 115–119.

    Article  CAS  Google Scholar 

  • Khattab, S., Saimura, M., and Kodaki, T., Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP-dependent xylitol dehydrogenase, J. Biotechnol., 2013, vol. 165, no. 3, pp. 153–156.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Skerker, J.M., Kang, W., et al., Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae, PloS one, 2013a, vol. 8, no. 2, p. e57048.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Lee, K., Kong, I., et al., Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation, J. Biotechnol., 2013b, vol. 164, no. 1, pp. 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Kirikyali, N. and Connerton, I.F., Heterologous expression and kinetic characterisation of Neurospora crassa β-xylosidase in Pichia pastoris, Enzyme Microb. Technol., 2014, vol. 57, pp. 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa, T., Kohda, K., Tokuhiro, K., et al., Identification of genes that enhance cellulase protein production in yeast, J. Biotechnol., 2011, vol. 151, no. 2, pp. 194–203.

    Article  CAS  PubMed  Google Scholar 

  • Kötter, P. and Ciriacy, M., Xylose fermentation by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 1993, vol. 38, no. 6, pp. 776–783.

    Article  Google Scholar 

  • Kötter, P., Amore, R., Hollenberg, C.P., and Ciriacy, M., Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant, Curr. Genet., 1990, vol. 18, no. 6, pp. 493–500.

    Article  PubMed  Google Scholar 

  • Kruckeberg, A.L., The hexose transporter family of Saccharomyces cerevisiae, Arch. Microbiol., 1996, vol. 166, no. 5, pp. 283–292.

    Article  CAS  PubMed  Google Scholar 

  • Kuyper, M., Harhangi, H.R., Stave, A., et al., High level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?, FEMS Yeast Res., 2003, vol. 4, no. 1, pp. 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Kuyper, M., Winkler, A., Dijken, J., and Pronk, J., Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle, FEMS yeast research, 2004, vol. 4, no. 6, pp. 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Kuyper, M., Hartog, M., Toirkens, M., et al., Metabolic engineering of a xylose isomerase expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation, FEMS Yeast Res., 2005a, vol. 5, nos. 4–5, pp. 399–409.

    Article  CAS  PubMed  Google Scholar 

  • Kuyper, M., Toirkens, M., Diderich, J., et al., Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain, FEMS Yeast Res., 2005b, vol. 5, no. 10, pp. 925–934.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., Kodaki, T., Park, Y., et al., Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae, J. Biotechnol., 2012, vol. 158.

  • Lin, Y. and Tanaka, S., Ethanol fermentation from biomass resources: current state and prospects, Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 627–642.

    Article  CAS  PubMed  Google Scholar 

  • Liu, E. and Hu, Y., Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation, Biochem. Engin. J., 2010, vol. 48, no. 2, pp. 204–210.

    Article  CAS  Google Scholar 

  • Lu, C. and Jeffries, T., Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain, Appl. Environ. Microbiol., 2007, vol. 73, no. 19, pp. 6072–6077.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madhavan, A., Tamalampudi, S., Ushida, K., et al., Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol, Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 6, pp. 1067–1078.

    Article  CAS  PubMed  Google Scholar 

  • Matano, Y., Hasunuma, T., and Kondo, A., Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass, Bioresource Technol., 2012, vol. 1, pp. 128–133.

    Article  Google Scholar 

  • Matsushika, A., Inoue, H., Kodaki, T., and Sawayama, S., Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives, Appl. Microbiol. Biotechnol., 2009, vol. 84, no. 1, pp. 37–53.

    Article  CAS  PubMed  Google Scholar 

  • Mimitsuka, T., Sawai, K., Kobayashi, K., et al., Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield, J. Biosci. Bioeng., 2014.

    Google Scholar 

  • Mormeneo, M., Pastor, F., and Zueco, J., Efficient expression of a paenibacillus barcinonensis endoglucanase in Saccharomyces cerevisiae, J. Industr. Microbiol. Biotechnol., 2012, vol. 39, no. 1, pp. 115–123.

    Article  CAS  Google Scholar 

  • Nakatani, Y., Yamada, R., Ogino, C., and Kondo, A., Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose, Microb. Cell Fact., 2013, vol. 12, p. 66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ojeda, K., Sánchez, E., El-Halwagi, M., and Kafarov, V., Exergy analysis and process integration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF and SSCF pathways, Chem. Eng. J., 2011, vol. 176, pp. 195–201.

    Article  Google Scholar 

  • Ota, M., Sakuragi, H., Morisaka, H., et al., Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation, Biotechnol. Progress, 2013, vol. 29, no. 2, pp. 346–351.

    Article  CAS  Google Scholar 

  • Runquist, D. Fonseca, C., et al., Expression of the gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 2009, vol. 82, no. 1, pp. 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Runquist, D., Hahn-Hagerdal, B., and Radstrom, P., Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae, Biotechnol. Biofuels, 2010, vol. 3, no. 5.

    Google Scholar 

  • Salusjärvi, L., Kaunisto, S., Holmström, S., et al., Overexpression of NADH-dependent fumarate reductase improves D-xylose fermentation in recombinant Saccharomyces cerevisiae, J. Industr. Microbiol. Biotechnol., 2013, vol. 40, no. 12, pp. 1383–1392.

    Article  Google Scholar 

  • Sauer, U., Evolutionary engineering of industrially important microbial phenotypes, in Metabolic Engineering, Berlin: Springer, 2001, pp. 129–169.

    Chapter  Google Scholar 

  • Sonderegger, M. and Sauer, U., Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose, Appl. Environ. Microbiol., 2003, vol. 69, no. 4, pp. 1990–1998.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steen, E.J., Chan, R., Prasad, N., et al., Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol, Microb. Cell Fact., 2008, vol. 7, no. 1, p. 36.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun, J., Wen, F., Si, T., et al., Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome, Appl. Environ. Microbiol., 2012, vol. 78, no. 11, pp. 3837–3845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki, H., Imaeda, T., Kitagawa, T., and Kohda, K., Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae, J. Biotechnol., 2012, vol. 157, no. 1, pp. 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Walfridsson, M., Bao, X., Anderlund, M., et al., Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase, Appl. Environ. Microbiol., 1996, vol. 62, no. 12, pp. 4648–4654.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, P. and Schneider, H., Growth of yeasts on D-xylulose, Canadian J. Microbiol., 1980, vol. 26, no. 9, pp. 1165–1168.

    Article  CAS  Google Scholar 

  • Wang, T.Y., Huang, C.J., Chen, H.L., et al., Systematic screening of glycosylation-and trafficking-associated gene knockouts in Saccharomyces cerevisiae identifies mutants with improved heterologous exocellulase activity and host secretion, BMC Biotechnol., 2013, vol. 13, no. 1, p. 71.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilde, C., Gold, N.D., Bawa, N., et al., Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain, Appl. Microbiol. Biotechnol., 2012, vol. 95, no. 3, pp. 647–659.

    Article  CAS  PubMed  Google Scholar 

  • Van Wyk, N., Den Haan, R., and Van Zyl, W.H., Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol., 2010, vol. 87, no. 5, pp. 1813–1820.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., Shen, Y., Hou, J., et al., Promotion of extracellular activity of cellobiohydrolase I from Trichoderma reesei by protein glycosylation engineering in Saccharomyces cerevisiae, Curr. Synthetic Sys. Biol., 2014, vol. 2, no. 111, p. 1000111.

    Google Scholar 

  • Yamada, R., Taniguchi, N., Tanaka, T., et al., Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulose expression, Biotechnol. Biofuels, 2011, vol. 4, no. 8.

    Google Scholar 

  • Young, E.M., Tong, A., Bui, H., et al., Rewiring yeast sugar transporter preference through modifying a conserved protein motif, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, no. 1, pp. 131–136.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu, J., Singh, D., Liu, N., et al., Construction of a glucose and xylose co-fermenting industrial Saccharomyces cerevisiae by expression of codon-optimized fungal xylose isomerase, J. Biobased Materials Bioenergy, 2011, vol. 5, no. 3, pp. 357–364.

    Article  CAS  Google Scholar 

  • Zhou, H., Cheng, J.S., Wang, B.L., et al., Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae, Metab. Eng., 2012, vol. 14, no. 6, pp. 611–622.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Rozanov.

Additional information

Original Russian Text © A.S. Rozanov, A.V. Kotenko, I.R. Akberdin, S.E. Peltek, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/2, pp. 989–998.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozanov, A.S., Kotenko, A.V., Akberdin, I.R. et al. Recombinant strains of Saccharomyces cerevisiae for ethanol production from plant biomass. Russ J Genet Appl Res 5, 375–382 (2015). https://doi.org/10.1134/S2079059715040139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715040139

Keywords

Navigation