Skip to main content

Evolutionary Engineering of Industrially Important Microbial Phenotypes

  • Chapter
  • First Online:
Metabolic Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 73))

Abstract

The tremendous complexity of dynamic interactions in cellular systems often impedes practical applications of metabolic engineering that are largely based on available molecular or functional knowledge. In contrast, evolutionary engineering follows nature’s ‘engineering’ principle by variation and selection. Thus, it is a complementary strategy that offers compelling scientific and applied advantages for strain development and process optimization, provided a desired phenotype is amenable to direct or indirect selection. In addition to simple empirical strain development by random mutation and direct selection on plates, evolutionary engineering also encompasses recombination and continuous evolution of large populations over many generations. Two distinct evolutionary engineering applications are likely to gain more relevance in the future: first, as an integral component in metabolic engineering of strains with improved phenotypes, and second, to elucidate the molecular basis of desired phenotypes for subsequent transfer to other hosts. The latter will profit from the broader availability of recently developed methodologies for global response analysis at the genetic and metabolic level. These methodologies facilitate identification of the molecular basis of evolved phenotypes. It is anticipated that, together with novel analytical techniques, bioinformatics, and computer modeling of cellular functions and activities, evolutionary engineering is likely to find its place in the metabolic engineer’s toolbox for research and strain development. This review presents evolutionary engineering of whole cells as an emerging methodology that draws on the latest advances from a wide range of scientific and technical disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey JE (1991) Science 252:1668

    Article  CAS  Google Scholar 

  2. Lee SY, Papoutsakis ET (1999) Metabolic engineering. Marcel Dekker

    Google Scholar 

  3. Cameron DC, Chaplen FWR (1997) Curr Opin Biotechnol 8:175

    Article  CAS  Google Scholar 

  4. Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Biotechnol Bioeng 52:109

    Article  CAS  Google Scholar 

  5. Emmerling M, Bailey JE, Sauer U (1999) Metabolic Eng 1:117

    Article  CAS  Google Scholar 

  6. Rubingh DN (1999) Curr Opin Biotechnol 8:417

    Article  Google Scholar 

  7. Marrs B, Delagrave S, Murphy D (1999) Curr Opin Microbiol 2:241

    Article  CAS  Google Scholar 

  8. Steipe B (2000) Curr Top Microbiol Immunol 243:55

    Google Scholar 

  9. Minshull J, Stemmer WPC (1999) Curr Opin Chem Biol 3:284

    Article  CAS  Google Scholar 

  10. Arnold FH, Volkov A (1999) Curr Opin Chem Biol 3:54

    Article  CAS  Google Scholar 

  11. Arnold FH (1998) Acc Chem Res 31:125

    Article  CAS  Google Scholar 

  12. Kettling U, Koltermann A, Eigen M (2000) Curr Top Microbiol Immunol 243:173

    Google Scholar 

  13. Stemmer W (2000) Engineering of complex systems by molecular breeding. Metabolic Engineering III Conference, Colorado Springs, CO 22–27 October 2000

    Google Scholar 

  14. Georgiou G, DeWitt N (1999) Nat Biotechnol 17:1161

    Article  CAS  Google Scholar 

  15. Kauffman SA (1993) The origins of order. Oxford University Press, Oxford

    Google Scholar 

  16. Wright S (1988) Am Nat 131:115

    Article  Google Scholar 

  17. Wright S (1982) Evolution 36:427

    Article  Google Scholar 

  18. Kucher O, Arnold FH (1997) Trends Biotechnol 15:523

    Article  Google Scholar 

  19. Hall BG (1999) FEMS Microbiol Lett 178:1

    Article  CAS  Google Scholar 

  20. Parekh S, Vinci VA, Strobel RJ (2000) Appl Microbiol Biotechnol 54:287

    Article  CAS  Google Scholar 

  21. Rowlands RT (1984) Enz Microbial Technol 6:3

    Article  CAS  Google Scholar 

  22. Vinci VA, Byng G (1999) Strain improvement by nonrecombinant methods. In: Demain AL, Davies JE (eds.) Manual of industrial microbiology and biotechnology. ASM Press, Washington DC, p 103

    Google Scholar 

  23. Müller HJ (1964) Mutat Res 1:2

    Google Scholar 

  24. Andersson SGE, Kurland CG (1998) Trends Microbiol 6:263

    Article  CAS  Google Scholar 

  25. Butler PR, Brown M, Oliver SG (1996) Biotechnol Bioeng 49:185

    Article  CAS  Google Scholar 

  26. 26. Drake JW (1991) Annu Rev Genet 25:124

    Article  Google Scholar 

  27. Moxon ER, Thaler DS (1997) Nature 387:659

    Article  CAS  Google Scholar 

  28. de Visser JAGM, Zeyl CW, Gerrish PJ, Blanchard JL, Lenski RE (1999) Science 283: 404

    Article  Google Scholar 

  29. Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. ASM Press, Washington, DC

    Google Scholar 

  30. Arber W (2000) FEMS Microbiol Rev 24:1

    Article  Google Scholar 

  31. Radman M (1999) Nature 401:866

    Article  CAS  Google Scholar 

  32. MacPhee DG (1993) ASM Press 59:297

    Google Scholar 

  33. Liu LX, Spoerke JM, Mulligan EL, Chen J, Reardon B, Westlund B, Sun L, Abel K, Armstrong B, Hardiman G, King J, McCague L, Basson M, Clover R, Johnson CD (1999) Genome Res 9:859

    Article  CAS  Google Scholar 

  34. Rowlands RT (1983) Industrial fungal genetics and strain selection. In: Smith JE, Berry DR, Kristiansen B (eds.) The filamentous fungi, vol 4. Edward Arnold, London, p 346

    Google Scholar 

  35. Kaplan NL, Hudson RR, Langley CH (1989) Genetics 123:887

    CAS  Google Scholar 

  36. Harder W, Kuenen JG, Matin A (1977) J Appl Bacteriol 43:1

    CAS  Google Scholar 

  37. Sniegowski PD, Gerrish PJ, Lenski RE (1997) Nature 387:703

    Article  CAS  Google Scholar 

  38. McBeth DL, Hauer B (1996) Appl Environ Microbiol 62:3538

    CAS  Google Scholar 

  39. Taddei F, Radman M, Maynard-Smith J, Toupance B, Gouyon PH, Godelle B (1997) Nature 387:700

    Article  CAS  Google Scholar 

  40. Liao H, McKenzie T, Hageman R (1986) Proc Natl Acad Sci USA 83:576

    Article  CAS  Google Scholar 

  41. Low NM, Holliger P, Winter G (1996) J Mol Biol 260:359

    Article  CAS  Google Scholar 

  42. Long-McGie J, Liu AD, Schellenberger V (2000) Biotechnol Bioeng 68:121

    Article  CAS  Google Scholar 

  43. Miller JH (1996) Annu Rev Microbiol 50:625

    Article  CAS  Google Scholar 

  44. Xiao W, Chow BL, Fontanie T, Ma L, Bacchetti S, Hryciw T, Broomfield S (1999) Mutat Res 435:1

    CAS  Google Scholar 

  45. Chen C, Merrill BJ, Lau PJ, Holm C, Kolodner RD (1999) Mol Cell Biol 19:7801

    CAS  Google Scholar 

  46. Miller JH, Suthar A, Tai J, Yeung A, Truong C, Stewart JL (1999) J Bacteriol 181:1576

    CAS  Google Scholar 

  47. de Lorenzo V, Herrero M, Sanchez JM, Timmis KN (1998) FEMS Microbiol Ecol 27:211

    Google Scholar 

  48. Snyder L, Champness W (1997) Molecular genetics of bacteria. ASM Press, Washington, DC

    Google Scholar 

  49. Hensel M (1998) Electrophoresis 19:608

    Article  CAS  Google Scholar 

  50. Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW (1996) Nat Genet 14:450

    Article  CAS  Google Scholar 

  51. Lee MS, Dougherty BA, Madeo AC, Morrison DA (1999) Appl Environ Microbiol 65:1883

    CAS  Google Scholar 

  52. Smith JM, Smith NH, O’Rourke M, Spratt BG (1993) Proc Natl Acad Sci USA 90:4384

    Article  CAS  Google Scholar 

  53. Paquin C, Adams J (1983) Nature 302:495

    Article  CAS  Google Scholar 

  54. Orr HA, Otto SP (1994) Genetics 136:1475

    CAS  Google Scholar 

  55. Seegers JFML, Franke CM, Kiewiet R, Venema G, Bron S (1995) Plasmid 33:71

    Article  CAS  Google Scholar 

  56. Velicer GJ (1999) Appl Environ Microbiol 65:264

    CAS  Google Scholar 

  57. Weikert C, Sauer U, Bailey JE (1997) Microbiol 143:1567

    CAS  Google Scholar 

  58. Çakar ZP, Sonderegger M, Sauer U (2001) (Submitted for publication)

    Google Scholar 

  59. Hall BG, Yokohama S, Calhoun DH (1983) Mol Biol Evol 1:109

    CAS  Google Scholar 

  60. Berg OG (1995) J Theor Biol 173:307

    Article  CAS  Google Scholar 

  61. Dykhuizen DE (1990) Annu Rev Ecol Syst 21:373

    Article  Google Scholar 

  62. Eberhard A (1972) J Bacteriol 109:101

    Google Scholar 

  63. Bierbaum G, Karutz M, Weuster-Botz D, Wandrey C (1994) Appl Microbiol Biotechnol 40:611

    CAS  Google Scholar 

  64. Walker JE, Miroux B (1999) Selection of Escherichia coli hosts that are optimized for the expression of proteins. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, p 575

    Google Scholar 

  65. Papadopoulos D, Schneider D, Meier-Eiss J, Arber W, Lenski RE, Blot M (1999) Proc Natl Acad Sci USA 96:3807

    Article  CAS  Google Scholar 

  66. Lenski RE, Mongold JA, Sniegowski PD, Travisano M, Vasi F, Gerrish PJ, Schmidt TM (1998) Ant Leeuwenhoek 73:35

    Article  CAS  Google Scholar 

  67. Lenski RE, Travisano M (1994) Proc Natl Acad Sci USA 91:6808

    Article  CAS  Google Scholar 

  68. 68. Naki D, Paech C, Ganshaw G, Schellenberger V (1998) Appl Microbiol Biotechnol 49: 290

    Article  Google Scholar 

  69. Dykhuizen DE, Hartl DL (1983) Microbiol Rev 47:150

    CAS  Google Scholar 

  70. Dykhuizen DE (1993) Meth Enz 224:613

    Article  CAS  Google Scholar 

  71. Teixeira de Mattos MJ, Neijssel OM (1997) J Biotechnol 59:117

    Article  Google Scholar 

  72. Dawson PSS (1985) CRC Crit Rev Biotechnol 2:315

    Article  Google Scholar 

  73. Kurland CG (1992) Annu Rev Genet 26:29

    CAS  Google Scholar 

  74. Helling RB, Vargas CN, Adams J (1987) Genetics 116:349

    CAS  Google Scholar 

  75. Rosenzweig RF, Sharp RR, Treves DS, Adams J (1994) Genetics 137:1

    Google Scholar 

  76. Treves DS, Manning S, Adams J (1998) Mol Biol Evol 15:789

    CAS  Google Scholar 

  77. Paquin CE, Adams J (1983) Nature 306:368

    Article  CAS  Google Scholar 

  78. Gostomski P, Mühlemann M, Lin Y-H, Mormino R, Bungay H (1994) J Biotechnol 37:167

    Article  CAS  Google Scholar 

  79. Zeng A-P (1999) Continuous culture. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, p 151

    Google Scholar 

  80. Bryson V, Szybalski W (1952) Science 116:45

    Article  Google Scholar 

  81. Fleming G, Dawson MT, Patching JW (1988) J Gen Microbiol 134:2095

    CAS  Google Scholar 

  82. Brown SW, Oliver SG (1982) Eur J Appl Microbiol Biotechnol 16:119

    Article  Google Scholar 

  83. Lane PG, Hutter A, Oliver SG, Butler PR (1999) Biotechnol Prog 15:1115

    Article  CAS  Google Scholar 

  84. Lane PG, Oliver SG, Butler PR (1999) Biotechnol Bioeng 65:397

    Article  CAS  Google Scholar 

  85. Orr HA (1999) Genet Res Camb 74:207

    CAS  Google Scholar 

  86. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK

    Google Scholar 

  87. Orr HA (1998) Evolution 52:935

    Article  Google Scholar 

  88. Davey HM, Jones A, Shaw AD, Kell DB (1999) Cytometry 35:162

    Article  CAS  Google Scholar 

  89. Koch AL (1994) Growth measurement. In: Gerhardt P, Murray GGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. ASM Press, Washington, DC, p 248

    Google Scholar 

  90. Çakar ZP (2000) Diss. ETH No 13665. ETH Zürich

    Google Scholar 

  91. Goodacre R, Trew S, Wrigley-Jones C, Neal M, Maddock J, Ottley TW, Porter N, Kell DB (1994) Biotechnol Bioeng 44:1205

    Article  CAS  Google Scholar 

  92. Lasko DR, Zamboni N, Sauer U (2000) Appl Microbiol Biotechnol 54:243

    Article  CAS  Google Scholar 

  93. Duetz WA, Rüedi L, Hermann R, O’Connor K, Büchs J, Witholt B (2000) Appl Environ Microbiol 66:2641

    Article  CAS  Google Scholar 

  94. Varma A, Palsson BO (1994) Bio/Technol 12:994

    Article  CAS  Google Scholar 

  95. Szyperski T (1998) Q Rev Biophys 31:41

    Article  CAS  Google Scholar 

  96. Sauer U, Szyperski T, Bailey JE (2000) Future trends in complex microbial reaction studies. In: Barbotin J-N, Portais J-C (eds) NMR in microbiology: theory and applications. Horizon Scientific Press, Wymondham, UK, p 479

    Google Scholar 

  97. Szyperski T (1995) Eur J Biochem 232:433

    Article  Google Scholar 

  98. Sauer U, Lasko DR, Fiaux JMH, Glaser R, Szyperski T, Wüthrich K, Bailey JE (1999) J Bacteriol 181:6679

    CAS  Google Scholar 

  99. Christensen B, Nielsen J (1999) Metabolic Eng 1:282

    Article  CAS  Google Scholar 

  100. Dauner M, Sauer U (2000) Biotechnol Progr 16:642

    Article  CAS  Google Scholar 

  101. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Trends Biotechnol 16:373

    Article  CAS  Google Scholar 

  102. Varner J, Ramkrishna D (1999) Curr Opin Biotechnol 10:146

    Article  CAS  Google Scholar 

  103. Bailey JE (1998) Biotechnol Prog 14:8

    Article  CAS  Google Scholar 

  104. Dykhuizen DE, Dean AM (1990) Trends Environ Ecol 5:257

    Article  Google Scholar 

  105. Tsen S-D, Lai S-C, Pang C-P, Lee J-I, Wilson TH (1996) Biochem Biophys Res Comm 224:351

    Article  CAS  Google Scholar 

  106. Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Nature Biotechnol 14:620

    Article  CAS  Google Scholar 

  107. Chen R, Hatzimanikatis V, Yap WM, Postma PW, Bailey JE (1997) Biotechnol Prog 13:768

    Article  CAS  Google Scholar 

  108. Ragout A, Sineriz F, Kaul R, Guoqiang D, Mattisson B (1996) Appl Microbiol Biotechnol 46:126

    Article  CAS  Google Scholar 

  109. Cornish A, Greenwood JA, Jones CW (1989) J Gen Microbiol 135:3001

    CAS  Google Scholar 

  110. Silman NJ, Carver MA, Jones CW (1989) J Gen Microbiol 135:3153

    CAS  Google Scholar 

  111. Mortlock RP, Gallo MA (1992) Experiments in the evolution of catabolic pathways using modern bacteria. In: Mortlock RP (eds) The evolution of metabolic function. CRC Press, Boca Raton, p 1

    Google Scholar 

  112. Zelder O, Hauer B (2000) Curr Opin Microbiol 3:248

    Article  CAS  Google Scholar 

  113. van der Meer JR (1997) Ant Leeuwenhoek 71:159

    Article  Google Scholar 

  114. Hall BG, Hauer B (1993) Meth Enz 224:603

    Article  CAS  Google Scholar 

  115. Schneider K-H, Jäkel G, Hoffmann R, Giffhorn F (1995) Microbiol 141:1865

    Article  CAS  Google Scholar 

  116. Torkelson J, Harris RS, Lombardo M-J, Nadgendran CT, Rosenberg S (1997) EMBO J 16:3303

    Article  CAS  Google Scholar 

  117. Finkel SE, Kolter R (1999) Proc Natl Acad Sci USA 96:4023

    Article  CAS  Google Scholar 

  118. Aarnio TH, Suihko M-L, Kauppinen VS (1991) Appl Biochem Biotechnol 27:55

    Article  Google Scholar 

  119. Schellenberger V (2000) Biotechnology 2000, Berlin, Germany, 3–8 September 2000

    Google Scholar 

  120. Ebner H, Follmann H (1983) Acetic acid. In: Rehm H-J, Reed G (eds) Biomass, microorganisms for special applications, microbial products I, energy from renewable resources, vol 3. Verlag Chemie, Weinheim, Germany, p 387

    Google Scholar 

  121. Tsen S-D (1994) Appl Microbiol Biotechnol 41:233

    Article  CAS  Google Scholar 

  122. Sauer U, Hatzimanikatis V, Hohmann H-P, Manneberg M, van Loon APGM, Bailey JE (1996) Appl Environ Microbiol 62:3687

    CAS  Google Scholar 

  123. Kurland CG, Dong H (1996) Mol Microbiol 21:1

    Article  CAS  Google Scholar 

  124. Miroux B, Walker JE (1996) J Mol Biol 260:289

    Article  CAS  Google Scholar 

  125. Noack D, Geuther R, Tonew M, Breitling R, Behnke D (1988) Gene 68:53

    Article  CAS  Google Scholar 

  126. O’Kennedy RD, Patching JW (1999) J Biotechnol 69:203

    Article  CAS  Google Scholar 

  127. Hjortso MA, Bailey JE (1984) Biotechnol Bioeng 26:528

    Article  CAS  Google Scholar 

  128. Lenski RE, Simpson SC, Nguyen TT (1994) J Bacteriol 176:3140

    CAS  Google Scholar 

  129. Wiebe MG, Robson GD, Oliver SG, Trinci APJ (1994) Microbiol 140:3015

    CAS  Google Scholar 

  130. Wiebe MG, Robson GD, Oliver SG, Trinci APJ (1996) Biotechnol Bioeng 51:61

    Article  CAS  Google Scholar 

  131. Withers JM, Wiebe MG, Robson GD, Osborne D, Turner G, Trinci APJ (1995) FEMS Microbiol Lett 133:245

    Article  CAS  Google Scholar 

  132. Withers JM, Wiebe MG, Robson GD, Trinci APJ (1994) Mycol Res 98:95

    Google Scholar 

  133. Brown CJ, Todd KM, Rosenzweig RF (1998) Mol Biol Evol 15:931

    CAS  Google Scholar 

  134. Ferea TL, Botstein D, Brown PO, Rosenzweig RF (1999) Proc Natl Acad Sci USA 96:9721

    Article  CAS  Google Scholar 

  135. Adams J, Paquin C, Oeller PW, Lee LW (1985) Genetics 110:173

    CAS  Google Scholar 

  136. Weikert C, Sauer U, Bailey JE (1998) Biotechnol Prog 14:420

    Article  CAS  Google Scholar 

  137. Weikert C, Sauer U, Bailey JE (1998) Biotechnol Bioeng 59:386

    Article  CAS  Google Scholar 

  138. Weikert C (1998) Diss. ETH No 12594, ETH Zürich

    Google Scholar 

  139. Weikert C, Canonaco F, Sauer U, Bailey JE (2000) Metabolic Eng 2:293–299

    Article  CAS  Google Scholar 

  140. Huisman GW, Kolter R (1994) Science 265:537

    Article  CAS  Google Scholar 

  141. Cantor CR (2000) Trends Biotechnol 18:6

    Article  CAS  Google Scholar 

  142. James P (1997) Q Rev Biophys 30:279

    Article  CAS  Google Scholar 

  143. Gerhold D, Rushmore T, Caskey CT (1999) Trends Biochem Sci 24:168

    Article  CAS  Google Scholar 

  144. Kurlandzka A, Rosenzweig RF, Adams J (1991) Mol Biol Evol 8:261

    CAS  Google Scholar 

  145. Kao CM (1999) Biotechnol Prog 15:304

    Article  CAS  Google Scholar 

  146. Zhao H, Moore JC, Volkov AA, Arnold FH (1999) Methods for optimizing industrial enzymes by directed evolution. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology. ASM Press, Washington, DC, p 597

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sauer, U. (2001). Evolutionary Engineering of Industrially Important Microbial Phenotypes. In: Nielsen, J., et al. Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45300-8_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45300-8_7

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41848-1

  • Online ISBN: 978-3-540-45300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics