Skip to main content
Log in

Application of SDEs to estimating solutions to heat conduction equations with discontinuous coefficients

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, numerical solutions to stochastic differential equations (SDEs) are proposed to be used for finding estimates of solutions to boundary value problems for linear parabolic equations with discontinuous coefficients. A generalized solution to a boundary value problem is approximated by the solution of the problem with smoothed coefficients. The results of calculations for a heat-protecting coating of a composite cellular material are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seepersad, C.C., Dempsey, B.M., Allen, J.K., Mistree, F., and McDowell, D.L., Design of Multifunctional Honeycomb Materials, J. AIAA., 2004, Vol. 42, No. 5, pp. 1025–1032.

    Article  Google Scholar 

  2. Diwan, G.C., Mohamed, M.S., Seaid, M., Trevelyan, J., and Laghrouche, O., Mixed Enrichment for the Finite Element Method in Heterogeneous Media, Int. J. Num. Meth. Engng., 2014, Wiley Online Library, wileyonlinelibrary.com, DOI: 10.1002/nme.4795.

    Google Scholar 

  3. Zhang, X. and Zhang, P., Heterogeneous Heat Conduction Problems by an Improved Element-Free Galerkin Method, Num. Heat Transfer, Part B: Fundamentals, Int. J. Comput. Methodol., 2014, vol. 65, iss. 4. pp. 359–375.

    Article  Google Scholar 

  4. Xiao-qi Liu, Multiscale Finite Element Methods for Heat Equation in Three Dimension Honeycomb Structure, Artif. Intell. Comput. Intell., Lect. Notes Comput. Sci., 2011, vol. 7004. pp. 186–194.

    Article  Google Scholar 

  5. Zhikov, V.V., Kozlov, S.M., and Oleinik, O.A., Averaging of Parabolic Operators, in Tr. Mosk. mat. obshch. (Proc.Moscow Mathematical Society), Moscow, 1982, Vol. 45, pp. 182–236.

    MATH  MathSciNet  Google Scholar 

  6. Zhikov, V.V., Kozlov, S.M., and Oleinik, O.A., Usrednenie differentsial’nykh operatorov (Averaging of Differential Operators), Moscow: Fizmatlit, 1993.

    MATH  Google Scholar 

  7. Vlasov, A.N., Savatorova, V.L., and Talonov, A.V., Asymptotic Averaging for Solving Heat Conduction Problems with Phase Transitions in Layered Media, Zh. Prikl. Mekh. Tekh. Fiz., 1995, Vol. 36, No. 5, pp. 155–163.

    MATH  MathSciNet  Google Scholar 

  8. Savatorova, V.L., Talonov, A.V., Volkov-Bogorodskii, D.B., and Vlasov, A.N., Mathematical Simulation of the Heat Conduction Process in a Periodic Medium with Cylindrical Inclusions Separated from the Matrix by a Thin Layer, Vest. Nizhegor. Univ., 2010, no. 6, pp. 168–179.

    Google Scholar 

  9. Volkov-Bogorodskii, D.B., Sushko, G.B., and Kharchenko, S.A., Combined MPI+Threads Parallel Implementation of the Block Method for Heat-Transfer Simulation in Structurally Inhomogeneous Media, Vych. Met. Programm., 2010, Vol. 11, pp. 127–136.

    Google Scholar 

  10. Misnar, A., Teploprovodnost’ tverdykh tel, zhidkostei, gazov i ikh sostavlyayushchikh (Heat Conduction of Solids, Gases and Composite Materials), Moscow:Mir, 1968.

    Google Scholar 

  11. Oleinik, O.A., Equations of Elliptic and Parabolic Types with Discontinuous Coefficients, Usp. Mat. Nauk, 1959, vol. 14, no. 5(89), pp. 164–166.

    Google Scholar 

  12. Ladyzhenskaya, O.A., Rivkind, V.Ya, and Ural’tseva, N.N., Classical Solvability of Diffraction Problems, Boundary Value Problems of Mathematical Physics, 4, Trudy MIAN SSSR, 1966, Vol. 92, pp. 116–146.

    MATH  Google Scholar 

  13. Ladyzhenskaya, O.A., Solonnikov, V.A., and Ural’tseva, N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa (Linear and Quasilinear Equations of Parabolic Type), Moscow: Nauka, 1967.

    Google Scholar 

  14. Sobolev, S.L., Nekotorye primeneniya funktsional’nogo analiza v matematicheskoi fizike (Some Applications of Functional Analysis in Mathematical Physics), 3rd. Ed., Moscow: Nauka, 1988.

    Google Scholar 

  15. Nikolsky, S.M., Kurs matematicheskogo analiza (A Course of Mathematical Analysis), vol. 2, Moscow: Nauka, 1983.

  16. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of the Theory of Functions and Functional Analysis), Moscow: Nauka, 1976.

    Google Scholar 

  17. Gikhman, I.I. and Skorokhod, A.V., Vvedenie v teoriyu sluchainykh protsessov (Introduction to the Theory of Random Processes), Moscow: Nauka, 1977.

    Google Scholar 

  18. Gobet, E., Weak Approximation of Killed Diffusion Using Euler Schemes, Stoch. Processes Their Appl., 2000, Vol. 87, pp. 167–197.

    Article  MATH  MathSciNet  Google Scholar 

  19. Kloeden, P.E. and Platen, E., Numerical Solution of Stochastic Differential Equations, Berlin: Springer-Verlag, 1992.

    Book  MATH  Google Scholar 

  20. Lépingle, D., Un schéma d’Euler pour équations différentiells stochastiques réfléchies, C.R. Acad. Sci. Paris, Série I Math., 1993, Vol. 316, pp. 601–605.

    MATH  Google Scholar 

  21. Gobet, E., Euler Schemes and Half-Space Approximation for the Simulation of Diffusion in a Domain, ESAIM Prob. Stat., 2001, Vol. 5, pp. 261–297.

    Article  MATH  MathSciNet  Google Scholar 

  22. Gusev, S.A. and Nikolaev, V.N., Calculation of Heat Transfer in Heterogeneous Structures Such as Honeycomb by Using Numerical Solution of Stochastic Differential Equations, Adv. Mater. Res., 2014, Vol. 1016, pp. 758–763.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gusev.

Additional information

Original Russian Text © S.A. Gusev, 2015, published in Sibirskii Zhurnal Vychislitel’noi Matematiki, 2015, Vol. 18, No. 2, pp. 147–161.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, S.A. Application of SDEs to estimating solutions to heat conduction equations with discontinuous coefficients. Numer. Analys. Appl. 8, 122–134 (2015). https://doi.org/10.1134/S1995423915020044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995423915020044

Keywords

Navigation