Skip to main content
Log in

Spatio-temporal expression pattern of mechanosensitive TRP ion channels during early development of Xenopus tropicalis

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

It is known that endogenous mechanical stress in the tissues of developing organisms is involved in regulating both morphogenesis and cell differentiation. These processes can be regulated by bioelectrical signals. Mechanosensitive ion channels are the structures that transform the mechanical stimulus into the bioelectrical signal. In this work we study the expression of mechanosensitive TRP ion channels during early development of Xenopus tropicalis. Real-time RT-PCR and PCR show the spatio-temporal expression of mRNA of mechanosensitive TRP ion channels during the early development of Xenopus tropicalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farge E. 2003. Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13, 1365–1377.

    Article  CAS  PubMed  Google Scholar 

  2. Beloussov L.V., Luchinskaia N.N., Ermakov A.S., Glagoleva N.S. 2006. Gastrulation in amphibian embryos, regarded as a succession of biomechanical feedback events. Int. J. Dev. Biol. 50, 113–122.

    Article  PubMed  Google Scholar 

  3. Kornikova E.S., Troshina T.G., Kremnyov S.V., Beloussov L.V. 2010. Neuro-mesodermal patterns in artificially deformed embryonic explants: A role for mechano-geometry in tissue differentiation. Dev. Dyn. 239 (3), 885–896.

    Article  CAS  PubMed  Google Scholar 

  4. McBeath R., Pirone D.M., Nelson C.M., Bhadriraju K., Chen C.S. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6, 483–495.

    Article  CAS  PubMed  Google Scholar 

  5. Engler A.J., Sen S., Sweeney H.L., Discher D.E. 2006. Matrix elasticity directs stem cell lineage specification. Cell. 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  6. Beloussov L.V., Kazakova N.I., Luchinskaia N.N., Novoselov V.V. 1997. Studies in developmental cytomechanic. Int. J. Dev. Biol. 41, 793–799.

    CAS  PubMed  Google Scholar 

  7. Beloussov L.V., Dorfman J.G., Cherdantzev V.G. 1975. Mechanical stresses and morphological patterns in amphibian embryos. J. Embryol. Exp. Morphol. 3, 559–574.

    Google Scholar 

  8. Beloussov L.V., Lakirev A.V., Naumidi I.I., Novoselov V.V. 1990. Effects of relaxation of mechanical tensions upon the early morphogenesis of Xenopus laevis embryos. Int. J. Dev. Biol. 34, 409–419.

    CAS  PubMed  Google Scholar 

  9. Pai V.P., Aw S., Shomrat T., Lemire J.M., Levin M. 2012. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development. 139 (2), 313–323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Levin M., Stevenson C.G. 2012. Regulation of cell behavior and tissue patterning by bioelectrical signals: Challenges and opportunities for biomedical engineering. Annu. Rev. Biomed. Eng. 14, 295–323.

    Article  CAS  PubMed  Google Scholar 

  11. Plant T.D. 2014. TRPs in mechanisensing and volume regulation. Handbook Exp. Pharmacol. 223, 743–766.

    Article  CAS  Google Scholar 

  12. Inoue R., Jian Z., Kawarabayashi Y. 2009. Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol. Therapeutics. 123 (3), 371–385.

    Article  CAS  Google Scholar 

  13. Thodeti C.K., Matthews B., Ravi A., Mammoto A., Ghosh K., Bracha A.L., Ingber D.E. 2009. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res. 104 (9), 1123–1130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Takao D., Nemoto T., Abe T., Kiyonari H., KajiuraKobayashi H., Shiratori H., Nonaka S. 2013. Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left–right axis formation. Dev Biol. 376 (1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  15. Fabian A., Bertrand J., Lindemann O., Pap T., Schwab A. 2012. Transient receptor potential canonical channel 1 impacts on mechanosignaling during cell migration. Pflügers Arch. 464, 623–630.

    Article  CAS  PubMed  Google Scholar 

  16. Chalfie M. 2009. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell. Biol. 10, 44–52.

    Article  CAS  PubMed  Google Scholar 

  17. Gillespie P.G., Walker R.G. 2001. Molecular basis of mechanosensory transduction. Nature. 413, 194–202.

    Article  CAS  PubMed  Google Scholar 

  18. Hamill O.P. 2006. Twenty odd years of stretch-sensitive channels. Pflügers Arch. 453, 333–351.

    Article  CAS  PubMed  Google Scholar 

  19. Kung C. 2005. A possible unifying principle for mechanosensation. Nature. 436, 647–654.

    Article  CAS  PubMed  Google Scholar 

  20. Kung C., Martinac B., Sukharev S. 2010. Mechanosensitive channels in microbes. Annu. Rev. Microbiol. 64, 313–329.

    Article  CAS  PubMed  Google Scholar 

  21. Nilius B., Honore E. 2012. Sensing pressure with ion channels. Trends Neurosci. 35, 477–486.

    Article  CAS  PubMed  Google Scholar 

  22. Sharif-Naeini R., Dedman A., Folgering J.H., Duprat F., Patel A., Nilius B., Honore E. 2008. TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflügers Arch. 456, 529–540.

    Article  CAS  PubMed  Google Scholar 

  23. Sukharev S., Sachs F. 2012. Molecular force transduction by ion channels: Diversity and unifying principles. J. Cell. Sci. 125, 3075–3083.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ogino H., McConnell W.B., Grainger R.M. 2006. Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech. Dev. 123 (2), 103–113.

    Article  CAS  PubMed  Google Scholar 

  25. Bookout A., Cummins C., Mangelsdorf D. 2005. Current protocols in molecular biology. Hoboken: John Wiley and Sons, Inc. P. 15.8.1–15.8.21.

    Google Scholar 

  26. Ramakers C., Ruijter J.M., Deprez R.H.L., Moorman A.F.M. 2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett. 339 (1), 62–66.

    Article  CAS  PubMed  Google Scholar 

  27. Nieuwkoop P.D., Faber J. 1956. Normal table of Xenopus laevis (Daudin). Amsterdam: North-Holland Publications.

    Google Scholar 

  28. Newby L.J., Streets A.J., Zhao Y., Harris P.C., Ward C.J., Ong A.C. 2002. Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J. Biol. Chem. 277, 20763–20773.

    Article  CAS  PubMed  Google Scholar 

  29. Heasman J. 2006. Patterning the early Xenopus embryo. Development. 133 (7), 1205–1217.

    Article  CAS  PubMed  Google Scholar 

  30. Maroto R., Raso A., Wood T.G., Kurosky A., Martinac B., Hamill O.P. 2005. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat. Cell. Biol. 7 (2), 179–185.

    Article  CAS  PubMed  Google Scholar 

  31. Köttgen M., Buchholz B., Garcia-Gonzalez M.A., Kotsis F., Fu X., Doerken M., Boehlke C., Steffl D., Tauber R., Wegierski T., Nitschke R., Suzuki M., Kramer-Zucker A., Germino G.G., Watnick T., Prenen J., Nilius B., Kuehn E.W., Walz G. 2008. TRPP2 and TRPV4 form a polymodal sensory channel complex. J. Cell Biol. 182 (3), 437–447.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tsiokas L., Arnould T., Zhu C., Kim E., Walz G., Sukhatme V.P. 1999. Specific association of the gene product of PKD2 with the TRPC1 channel. Proc. Natl. Acad. Sci. USA. 96 (7), 3934–3939.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Du J., Ma X., Shen B., Huang Y., Birnbaumer L., Yao X. 2014. TRPV4, TRPC1 and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J. 28 (11), 4677–4685.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Silina.

Additional information

Original Russian Text © S.G. Silina, D.A. Nikishin, S.V. Kremnyov, 2015, published in Biologicheskie Membrany, 2015, Vol. 32, No. 3, pp. 194–201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silina, S.G., Nikishin, D.A. & Kremnyov, S.V. Spatio-temporal expression pattern of mechanosensitive TRP ion channels during early development of Xenopus tropicalis . Biochem. Moscow Suppl. Ser. A 9, 194–201 (2015). https://doi.org/10.1134/S1990747815020191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747815020191

Keywords

Navigation