Skip to main content
Log in

Crustal electrical conductivity of the Indian continental subduction zone: New data from the profile in the Garhwal Himalaya

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

We present the results of studying the geoelectrical structure of the zone of continental subduction of the Indian lithospheric plate within the Gahrwal Himalaya. In the framework of the Russian–Indian project, the data of the broadband magnetotelluric soundings conducted by the Indian Institute of Technology Roorkee on the regional profile across the structures of the orogen were expanded, processed, and interpreted by the new program tools adapted for the measurements in the mountain conditions and for the presence of industrial noise. The constructed model of the deep electrical conductivity cross section for Garhwal revealed its two-dimensional (2D) features and more accurately delineated the location of the midcrustal conductor associated with the ramp structure of the detachment plane. The correlations with the regional distribution of the earthquake hypocenters and the seismotomographic images suggest a common, fluid-related nature of the seismic and geoelectrical anomalies in the crust of the Garhwal Tectonic Corridor and enabled the identification of the seismogenerating zones. Among the data of the expanded profile set of magnetotelluric and magnetovariational transfer functions, the response of a poorly explored deep conductive body is revealed. This object is located east of the profile and is probably associated with the activation of the ancient trans-Himalayan cratonic structures which prepares the segmentation of the Himalayan arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, B.R. and Mahashabde, M.V., A transverse conductive structure in the northwest Himalaya, Phys. Earth Planet. Inter., 1987, vol. 45, no. 2, pp. 119–127.

    Article  Google Scholar 

  • Arora, B.R., Unsworth, J.M., and Rawat, G., Deep resistivity structure of the northwest Indian Himalaya and its tectonic implications, Geophys. Res. Lett., 2007, vol. 34, L04307.

    Google Scholar 

  • Ashish, P.A., Rai, S.S., and Gupta, S., Seismological evidence for shallow crustal melt beneath the Garhwal High Himalaya, India: implications for the Himalayan channel flow, Geophys. J. Int., 2009, vol. 177, no. 3, pp. 1111–1120.

    Google Scholar 

  • Bai, D., Unsworth, M.J., Meju, M.A., Ma, X., Teng, J., Kong, X., Sun, Y., Sun, J., Wang, L., Jiang, C., Zhao, C., Xiao, P., and Liu, M., Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging, Nat. Geosci. Lett., 2010. doi 10.1038/NGEO830

    Google Scholar 

  • Beaumont, C., Jamieson, R.A., Nguyen, M.H., and Lee, B., Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 2001, pp. 738–742.

    Google Scholar 

  • Berdichevsky, M.N. and Dmitriev, V.I., Modeli i metody magnitotelluriki (Models and Methods of Magnetotellurics), Moscow: Nauchnyi Mir, 2009.

    Google Scholar 

  • Berdichevskii, M.N., Sokolova, E.Yu., Varentsov, Iv.M., Rybin, A.K., Baglaenko, N.V., Batalev, V.Yu., Golubtsova, N.S., Matyukov, V.E., and Pushkarev, P.Yu., Geoelectric section of the central Tien Shan: analysis of magnetotelluric and magnetovariational responses along the Naryn geotraverse, Izv., Phys. Solid Earth, 2010, vol. 46, no. 8, pp. 679–697.

    Article  Google Scholar 

  • Bilham, R., Gaur, V.K., and Molnar, P., Himalayan seismic hazard, Science, 2001, vol. 293, pp. 1442–1444.

    Article  Google Scholar 

  • Bollinger, L., Avouac, J.P., Cattin, R., and Pandey, M.R., Stress buildup in the Himalaya, J. Geophys. Res., 2004, vol. 109, no. B11, B11405. http://dxdoiorg/10.1029/2003JB002911

    Google Scholar 

  • Bollinger, L., Henry, P., and Avouac, J., Mountain building in the Nepal Himalaya: thermal and kinematic model, Earth Planet. Sci. Lett., 2006, vol. 244, nos. 1–2, pp. 58–71.

    Article  Google Scholar 

  • Caldwell, T.G., Bibby, H.M., and Brown, C., The magnetotelluric phase tensor, Geophys. J. Int., 2004, vol. 158, pp. 457–469.

    Article  Google Scholar 

  • Caldwell, W.B., Klemperer, S.L., Rai, S.S., and Lawrence, J.F., Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion, Tectonophysics, 2009, vol. 477, pp. 58–65.

    Article  Google Scholar 

  • Caldwell, W.B., Klemperer, S.L., Lawrence, J.F., and Rai, S.S., Receiver function imaging in the western Himalaya, Proc. 25th Himalaya–Karakoram–Tibet Workshop: U.S. Geological Survey, Open-File Report 2010-1099, 2010.

    Google Scholar 

  • Caldwell, W.B., Klemperer, S.L., Rai, S.S., Lawrence, J.F., and Ashish, P.A., Characterizing the Main Himalaya Thrust in the Garhwal Himalaya, India with receiver function CCP stacking, Earth Planet. Sci. Lett., 2013, vol. 367, pp. 15–27.

    Article  Google Scholar 

  • Cattin, R., Martelet, G., Henry, P., Avouac, J.P., Diament, M., and Shakya, T.R., Gravity anomalies, crustal structure and thermo-mechanical support of the Himalaya of Central Nepal, Geophys. J. Int., 2001, vol. 147, no. 2, pp. 381–392. doi 10.1046/j.0956-540x.2001.01541

    Google Scholar 

  • Clark, M.K. and Royden, L.H., Topographic ooze: building the eastern margin of Tibet by lower crustal flow, Geology, 2000, vol. 28, pp. 703–706.

    Article  Google Scholar 

  • Gupta, G., Gokarn, S.G., and Singh, B.P., Thickness of the Siwalik sediments in the Mohand-Ramnagar region using magnetotelluric studies, Phys. Earth Planet. Inter., 1994, vol. 83, pp. 217–224.

    Article  Google Scholar 

  • Gürer, A. and Bayrak, M., Relation between electrical resistivity and earthquake generation in the crust of West Anatolia, Turkey, Tectonophysics, 2007, vol. 445, pp. 49–65.

    Article  Google Scholar 

  • Hata, M., Oshiman, N., Yoshimura, R., Tanaka, Y., and Uyeshima, M., Three-dimensional electromagnetic imaging of upwelling fluids in the Kyushu subduction zone, Japan, J. Geophys. Res., Solid Earth, 2015, vol. 120. doi 10.1002/2014JB011336

  • Herman, F., Copeland, P., Avouac, J.-P., Bollinger, L., Maheo, G., Le Fort, P., Rai, S., Forster, D., Pecher, A., Stuwe, K., and Hemry, P., Exhumation, crustal deformation, and thermal structure of Nepal Himalaya derived from inversion of thermochronological and thermobarometric data and modeling of the topography, J. Geophys. Res., 2010, vol. 115, B06407. doi 10.1029/2008JB006126

    Google Scholar 

  • Hochstein, M.P. and Regenauer-Liebr, K., Heat generation associated with collision of two plates: the Himalayan geothermal belt, J. Volcanol. Geotherm. Res., 1998, vol. 83, pp. 75–92.

    Article  Google Scholar 

  • Hyndman, R.D. and Shearer, P.M., Water in the lower continental crust: modelling magnetotelluric and seismic reflection results, Geophys. J. Int., 1989, vol. 98, pp. 343–365.

    Article  Google Scholar 

  • Israil, M., Tyagi, D.K., Gupta, P.K., and Sri Niwas, Magnetotelluric investigations for imaging electrical structure of Garhwal Himalayan corridor, Uttarakhand, India, J. Earth Syst. Sci., 2008, vol. 117, no. 3, pp. 189–200.

    Article  Google Scholar 

  • Ivanov, P.V. and Pushkarev, P.Yu., Possibilities of interpretation of the magnetotelluric data obtained on a single profile over 3D resistivity structures, Izv., Phys. Solid Earth, 2010, vol. 46, no. 9, pp. 727–734.

    Article  Google Scholar 

  • Kayal, J.R., Microearthquake Seismology and Seismotectonics of South Asia. New Delhi: Capital Publishing Company, 2008.

    Google Scholar 

  • Khattri, K.N. and Tyagi, A.R., The transverse tectonic features in Himalaya, Tectonophysics, 1983, vol. 96, nos. 1/2, pp. 19–29.

    Article  Google Scholar 

  • Khattri, K.N., Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary, Tectonophysics, 1987, vol. 138, pp. 79–92.

    Google Scholar 

  • Khattri, K.N., Local seismicity investigations in the Garhwal–Kumaon Himalaya, Mem. Geol. Soc. India, 1992, vol. 23, pp. 45–66.

    Google Scholar 

  • Kirbi, S.H., Rheology of the lithosphere, Rev. Geophys. Space Phys., 1983, vol. 21, no. 6, pp. 1458–1487.

    Article  Google Scholar 

  • Kohlstedt, D.L., Evans, B., and Mackwell, S.J., Strength of the lithosphere: constraints imposed by laboratory experiments, J. Geophys. Res., 1995, vol. 100, no. B9, pp. 17587–17602.

    Article  Google Scholar 

  • Kosarev, G.L., Oreshin, S.I., Vinnik, L.P., Kiselev, S.G., Dattatrayam, R.S., Suresh, G., and Baidya, P.R., Heterogeneous lithosphere and the underlying mantle of the Indian subcontinent, Tectonophysics, 2013, vol. 592, pp. 175–186.

    Article  Google Scholar 

  • Kurtz, R.D., De Laurier, J.M., and Gupta, J.C., A magnetotelluric sounding across Vancouver Island detects the subducting Juan de Fuca plate, Nature, 1986, no. 321, pp. 596–599.

    Article  Google Scholar 

  • Lemonnier, C., Marquis, G., Perrier, F., Avouac, J.P., Chitrakar, G., Kafle, B., Sapkota, S., Gautam, U., Tiwari, D., and Bano, M., Electrical structure of the Himalaya of Central Nepal: high conductivity around the midcrustal ramp along the MHT, Geophys. Res. Lett., 1999, vol. 26, pp. 3261–3264.

    Article  Google Scholar 

  • Li, S., Unsworth, M.J., Booker, J.R., Wenbo, W., Tan, H., and Jones, A.G., Partial melt or aqueous fluids in the Tibetan crust: constraints from INDEPTH magnetotelluric data, Geophys. J. Int., 2003, vol. 153, pp. 289–304.

    Article  Google Scholar 

  • Li, Zhiwei, Roecker, S., Li, Zhihai, Wei, B., Wang, H., Schelochkov, G., and Bragin, V., Tomographic image of the crust and upper mantle beneath the western Tien Shan from the MANAS broadband deployment: possible evidence for lithospheric delamination, Tectonophysics, 2009, vol. 477, pp. 49–57.

    Article  Google Scholar 

  • Lilley, F.E.M., Singh, B., Arora, B.R., Srivastava, B.J., Prasad, S.N., and Sloane, M.N., A magnetometer array study in Northwest India, Phys. Earth Planet. Inter., 1981, vol. 25, pp. 232–240.

    Article  Google Scholar 

  • Lyon-Caen, H. and Molnar, P., Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga basin, Tectonics, 1985, vol. 4, no. 6, pp. 513–538.

    Google Scholar 

  • Lyubushin, A.A., Arora, B.R., and Kumar Naresh, Investigation of seismicity in western Himalaya, Geophys. Res., 2010, vol. 11, no. 1, pp. 27–34.

    Google Scholar 

  • Mahesh, P., Rai, S.S., Sivaram, K., Paul, A., Sarma, P.R., and Gaur, V.K., One-dimensional reference velocity model and precise location of earthquake hypocentres in Central Himalaya, Bull. Seism. Soc. Am., 2013, vol. 103. doi 10.1758/0120110328

    Google Scholar 

  • Molnar, P. and Tapponnier, P., Cenozoic tectonics of Asia: effects of a continental collision, Science, 1975, vol. 189, pp. 419–426. doi 10.1126/science.189.4201.419

    Article  Google Scholar 

  • Molnar, P., A review of the seismicity and the rate of active underthrusting and deformation at the Himalaya, J. Himalayan Geol., 1990, vol. 1, no. 2, pp. 131–154.

    Google Scholar 

  • Molnar, P., England, Ph., and Martinod, J., Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon, Rev. Geophys., 1993, vol. 31, no. 4, pp. 357–396.

    Article  Google Scholar 

  • Monsalve, G., Sheehan, A., Schulte-Pelkum, V., Rajaure, S., Pandey, M.R., and Wu, F., Seismicity and one-dimensional velocity structure of the Himalayan collision zone: earthquakes in the crust and upper mantle, J. Geophys. Res., 2006, vol. 111, B10301. doi 1029/2005JB004062

    Article  Google Scholar 

  • Mukhopadhyay, S. and Sharma, J., Crustal scale detachment in the Himalayas: a reappraisal, Geophys. J. Int., 2010, vol. 183, pp. 850–860.

    Article  Google Scholar 

  • Nabelek, J. et al. (Hi-CLIMB Collab.), Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment, Science, 2009, vol. 325, pp. 1371–1374.

  • Nelson, K.D. et al., Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results, Science, 1996, vol. 274, pp. 1684–1687.

    Article  Google Scholar 

  • Nesbitt, B., Electrical resistivities of crustal fluids, J. Geophys. Res., 1993, vol. 98, no. B3, pp. 4301–4310.

    Article  Google Scholar 

  • Ni, J. and Barazangi, M., Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian plate beneath the Himalaya, J. Geophys. Res., 1984, vol. 9, no. B2, pp. 1147–163.

    Article  Google Scholar 

  • Oreshin, S., Kiselev, S., Vinnik, L., Prakasam, K.S., Rai, S.S., Makeyeva, L., and Savvin, Y., Crust and mantle beneath western Himalaya, Ladakh and western Tibet from integrated seismic data, Earth Planet. Sci. Lett., 2008, vol. 271, nos. 1–4, pp. 75–87.

    Article  Google Scholar 

  • Pandey, M.R., Tandukar, R.P., and Avouac, J.P., Lavé, J., and Massot, J.P., Interseismic strain accumulation on the Himalayan crustal ramp (Nepal), Geophys. Rev. Lett., 1995, vol. 22, vol. 7, pp. 751–754.

    Article  Google Scholar 

  • Patro, P.K. and Harinarayana, T., Deep geoelectric structure of the Sikkim Himalayas (NE India) using magnetotelluric studies, Phys. Earth Planet. Inter., 2009, vol. 173, nos. 1–2, pp. 171–176.

    Article  Google Scholar 

  • Paul, J., Burgmann, R., and Gaur, V.K., The motion and active deformation of India, Geophys. Res. Lett., 2001, vol. 28, pp. 647–650.

    Article  Google Scholar 

  • Rajendran, C.P., Rajendran, K., Sanwal, J., and Sandiford, M., Archeological and historical database on the medieval earthquakes of the central Himalaya: ambiguities and inferences, Seismol. Res. Lett., 2013, vol. 84, no. 6, pp. 1098–1108. doi 10.1785/0220130077

    Article  Google Scholar 

  • Rebetsky, Yu.L. and Alekseev, R.S., The field of recent tectonic stresses in Central and South-Eastern Asia, Geodynam. Tectonophys., 2014, vol. 5, no. 1, pp. 257–290. doi 10.5800/GT201450127

    Article  Google Scholar 

  • Roy, S. and Rao, R.U.M., Heat flow in the Indian shield, J. Geophys. Res., 2000, vol. 105, no. B11, pp. 25587–25604.

    Article  Google Scholar 

  • Roy, P.N.S. and Mondal, S.K., Multifractal analysis of earthquakes in Kumaun Himalaya and its surrounding region, J. Earth Syst. Sci., 2012, vol. 121, no. 4, pp. 1033–1047.

    Article  Google Scholar 

  • Rybin, A.K., Glubinnoe stroenie i sovremennaya geodinamika Tsentral’nogo Tyan’-Shanya po rezul’tatam magnitotelluricheskikh issledovanii (The Deep Structure and Contemporary Geodynamics of Central Tien Shan from Magnetotelluric Studies), Moscow: Nauchnyi Mir, 2011.

    Google Scholar 

  • Sachan, H.K., Sharma, R., Sahai, A., and Gururajan, N.S., Fluid events and exhumation history of the main central thrust zone Garhwal Himalaya (India), J. Asian Earth Sci., 2001, vol. 19, pp. 207–221.

    Article  Google Scholar 

  • Sass, P., Ritter, O., Ratschbacher, L., Tympel, J., Matiukov, V.E., Rybin, A.K., and Batalev, V.Yu., Resistivity structure underneath the Pamir and Southern Tian Shan, Geophys. J. Int., 2014, vol. 198, pp. 564–579. doi 10.1093/gji/ggu146

    Article  Google Scholar 

  • Schulte-Pelkum, V., Monsalve, G., Sheehan, A., Pande, M.R., Sapkota, S., Bilham, R., and Wu, F., Imaging the Indian subcontinent beneath the Himalaya, Nature, 2005, vol. 435, no. 7046, pp. 1222–1225.

    Article  Google Scholar 

  • Seeber, L., Armbruster, J., and Quittmeyer, R.C., Seismicity and continental subduction in the Himalayan arc, in Zagros-Hindukush-Himalaya Geodynamic Evolution, Gupta, H. and Delany, F., Eds., Washington: American Geophysical Union, 1981, vol. 3, pp. 215–242.

    Article  Google Scholar 

  • Sheng, J., Gaofeng, Ye, Wenbo, W., Ming, D., and Jian’en, J., Electrical structure and fault features of crust and upper mantle beneath the western margin of the Qinghai–Tibet Plateau, J. China Univ. Geosci., 2007, vol. 18, no. 4, pp. 326–333.

    Article  Google Scholar 

  • Smirnov, M.Yu., Magnetotelluric data processing with a robust statistical procedure having a high breakdown point, Geophys. J. Int., 2003, vol. 152, pp. 1–7.

    Article  Google Scholar 

  • Sokolova, E., Berdichevsky, M., Varentsov, I., Rybin, A., Baglaenko, N., Batalev, V., Golubtsova, N., Matukov, V., and Pushkarev, P., Advanced methods for joint MT/MV profile studies of active orogens: the experience from the Central Tien Shan, Protokoll uber das 22 Kolloquium “Elektromagnetische Tiefenforschung,” Decin, 2007, pp.132–141.

    Google Scholar 

  • Sokolova, E.Yu. et al. (Naryn Collab.), Deep geoelectrical images of distant and frontal effect zones of the India-Eurasia collision, Proc. Int. Seminar on Recent Advances in Geosciences, Dhanbad: ISM, 2011, pp. 305–308.

  • Sokolova, E., Israil, M., Golubtsova, N., Gupta, P., Pushkarev, P., Cherevatova, M., and Smirnov, M., Contribution of crustal conductivity data on Garhwal Himalaya to the understanding of regional seismogenic and geodynamic patterns. Abstract 1341 at the 22nd Electromagnetic Induction Workshop, Weimar, August 24–30, 2014.

    Google Scholar 

  • Srivastava, P. and Mitra, G., Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): implications for evolution of the Himalayan fold-and-thrust belt, Tectonics, 1994, vol. 13, no. 1, pp. 89–109.

    Google Scholar 

  • Tapponnier, P., Peltzer, G., Le Dain, A., Armijo, R., and Cobbold, P., Propagating extrusion tectonics of Asia, new insights from simple experiments with plasticine, Geology, 1982, vol. 10, pp. 611–616.

    Article  Google Scholar 

  • Tullis, J., Yund, R., and Farver, J., Deformation-enhanced fluid distribution in feldspar aggregates and implication for ductile shear zones, Geology, 1996, vol. 24, no. 1, pp. 63–66.

    Article  Google Scholar 

  • Unsworth, M.J. et al. (INDEPTH-MT Collab.), Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data, Nature, 2005, vol. 438, pp. 78–81.

    Article  Google Scholar 

  • Valdiya, K.S., Geology of Kumaun Lesser Himalaya, Dehradun: Wadia Insitute of Himalayan Geology, 1980.

    Google Scholar 

  • Vanyan, L.L., Berdichevsky, M.N., Pushkarev, P.Yu., and Romanyuk, P.V., A geoelektric model of the Cascadia subduction zone, Izv., Phys. Solid Earth, 2002, vol. 38, no. 10, pp. 816–845.

    Google Scholar 

  • Varentsov, I.M. et al. (BEAR Collab.), System of electromagnetic field transfer operators for the BEAR array of simultaneous soundings: methods and results, Izv., Phys. Solid Earth, 2003, vol. 39, no. 2, pp. 118–148.

    Google Scholar 

  • Varentsov, Iv.M. et al. (EMTESZ Collab.), The magnetic control approach for the reliable estimation of transfer functions in the EMTESZ–Pomerania project, Publ. Inst. Geophys. Pol. Acad. Sci, 2005, vol. C-95(386), pp. 68–79.

    Google Scholar 

  • Varentsov, Iv.M., Joint robust inversion of magnetotelluric and magnetovariational data, in Electromagnetic Sounding of the Earth’s Interior, Ser. Methods in Geochemistry and Geophysics, vol. 40, Spichak, V., Ed., Amsterdam: Elsevier, 2007, pp. 189–222.

    Google Scholar 

  • Varentsov, I.M., Pragmatic 2D inversion of the simultaneous arrays of the MT/MV responses, Materialy V Vserossiiskoi shkoly-seminara im. Berdichevskogo M.N., Van’yana L.L. po EMzondirovaniyam Zemli (Proc. 5th Berdichevsky and Vanyan All-Russian Workshop on Electromagnetic Soundings of the Earth), vol. 2, St.-Petersburg, 2011, pp. 17–21.

    Google Scholar 

  • Vinnik, L.P., Aleshin, I.M., Kaban, M.K., Kiselev, S.G., Kosarev, G.L., Oreshin, S.I., and Reigber, Ch., Crust and mantle of the Tien Shan from data of the receiver function tomography, Izv., Phys. Solid Earth, 2006, vol. 42, no. 8, pp. 639–651.

    Article  Google Scholar 

  • Wang, Z. and Zhao, D., Seismic evidence for the influence of fluids on the 2005 west off Fukuoka prefecture earthquake in southwest Japan, Phys. Earth Planet. Inter, 2006, vol. 155, pp. 313–324.

    Article  Google Scholar 

  • Wason, H.R., Kumar, J., and Walia, S.K., Local seismicity of the Garhal Himalaya subsequent to the Uttarakashi earthquake of October 20, 1991, Gondawana Res. Group Mem., 1999, no. 6, pp. 335–340.

    Google Scholar 

  • Wei, W., Zhang, L., Ye, G., Jin, S., Jing, J., Dong, D., Xie, C., Yin, Y., Wang, G., and Guo, Z., Three-dimensional electrical structure of the crust and upper mantle of the Tibetan Plateau—preliminary results from SinoProbe Magnetotelluric Array Data, Proc. 12th China Int. Geo-EM Workshop, Changsha, China, 2015, p. 346.

    Google Scholar 

  • Yin, A., Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation, Earth. Sci. Rev., 2006, vol. 76, nos. 1–2, pp. 1–131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Sokolova.

Additional information

Original Russian Text © E.Yu. Sokolova, M. Israil, P. Gupta, A.V. Koshurnikov, M.Yu. Smirnov, M.V. Cherevatova, 2016, published in Fizika Zemli, 2016, No. 2, pp. 127–147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolova, E.Y., Israil, M., Gupta, P. et al. Crustal electrical conductivity of the Indian continental subduction zone: New data from the profile in the Garhwal Himalaya. Izv., Phys. Solid Earth 52, 271–290 (2016). https://doi.org/10.1134/S1069351316020130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351316020130

Keywords

Navigation