Skip to main content
Log in

Electrochemical studies of technetium–ruthenium alloys in HNO3: Implications for the behavior of technetium waste forms

  • Published:
Radiochemistry Aims and scope

Abstract

The electrochemical behavior of Tc–Ru alloys (Ru content, at. %: 3.2, 5.2, 20.1, 24.7) in 1 M HNO3 was studied. The transpassivation potentials (E tp) of Tc–Ru alloys were determined by linear voltammetry. The results show that the transpassivation potentials of the alloys increase with the Ru content. To understand the dissolution mechanism, electrolysis experiments at 1.2 V vs. Ag/AgCl were performed; the corrosion products of the alloys were characterized in solution by UV-visible spectroscopy and electrospray ionization mass spectrometry (ESI-MS). For Ru, a polymeric Ru(IV) species was detected, while for Tc the speciation was dominated by TcO4 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poineau, F., Mausolf, E., Jarvinen, G.D., et al., Inorg. Chem., 2012, vol. 52, p. 3573.

    Article  Google Scholar 

  2. Buck, E.C., Mausolf, E.J., McNamara, B.K., et al., J. Nucl. Mater., 2015, vol. 461, p. 236.

    Article  CAS  Google Scholar 

  3. Jarvinen, G.D., Long, K.M., Goff, G.S., et al., Solvent Extr. Ion Exch., 2013, vol. 31, p. 416.

    Article  CAS  Google Scholar 

  4. Luksic, S.A., Riley, B.J., Schweiger, M., and Hrma, P., J. Nucl. Mater., 2015, vol. 466, p. 526.

    Article  CAS  Google Scholar 

  5. Poineau, F., Hartmann, T., Weck, P.F., et al., Inorg. Chem., 2010, vol. 49, p. 1433.

    Article  CAS  Google Scholar 

  6. Eber, W.L., Cunnane, J.C., Frank, S.M., and Williamson, M.J., Materials Challenges in Alternative and Renewable Energy, Wicks, G., Simon, J., Zidan, R., et al., Eds., Am. Ceram. Soc., 2011, pp. 291–304.

  7. Bonnerot, J.M., Broudic, V., Phélip, M., et al., J. Nucl. Radiochem. Sci., 2005, vol. 6, p. 287.

    Article  CAS  Google Scholar 

  8. Peretrukhin, V.F., Moisy, P., Maslennikov, A.G., et al., Zh. Ross. Khim. O–va. im. D.I. Mendeleeva, 2007, vol. 51, no. 6, pp. 12–24.

    CAS  Google Scholar 

  9. Taylor, C.D. and Liu, X.Y., J. Nucl. Mater., 2013, vol. 434, p. 382.

    Article  CAS  Google Scholar 

  10. Pourbaix, M., Muylder, J.V., and DeZoubov, N., Platinum Met. Rev., 1959, vol. 3, p. 100.

    Google Scholar 

  11. DeZoubov, N. and Pourbaix, M., Cebelcor Tech. Rep., 1957, vol. 50, p. 1.

    Google Scholar 

  12. Toniashov, N.D., Chernova, G.P., and Ustinski, E.M., Platinum Met. Rev., 1979, vol. 23, p. 143.

    Google Scholar 

  13. Schutz, R.R., Corros. Sci., 2003, vol. 59, p. 1043.

    Article  CAS  Google Scholar 

  14. Potgieter, J., Barnard, W., and Myburg, G., J. Appl. Electrochem., 1996, vol. 26, p. 1103.

    Article  CAS  Google Scholar 

  15. Maslennikov, A., Fourest, B., David, F., and Masson, M., Radiochim. Acta, 2003, vol. 91, p. 419.

    CAS  Google Scholar 

  16. Rotmanov, K.V., Maslennikov, A.G., Pichuzhkina, E.M., and Peretrukhin, V.F., Radiochemistry, 2015, vol. 57, no. 2, pp. 131–135.

    Article  CAS  Google Scholar 

  17. Maslennikov, A.G., Rotmanov, K.V., Kravchenko, N.G., et al., Radiochemistry, 2013, vol. 55, no. 1, pp. 77–81.

    Article  CAS  Google Scholar 

  18. Rotmanov, K.V., Maslennikov, A.G., Zakharova, L.V., et al., Radiochemistry, 2015, vol. 57, no. 1, pp. 26–30.

    Article  CAS  Google Scholar 

  19. Ferrier, M., Poineau, F., Jarvinen, G.D., and Czerwinski, K.R., J. Radioanal. Nucl. Chem., 2013, vol. 298, p. 1809.

    Article  CAS  Google Scholar 

  20. Poineau, F., Rodriguez, E.E., Forster, P.M., et al., J. Am. Chem. Soc., 2009, vol. 131, p. 910.

    Article  CAS  Google Scholar 

  21. Massalski, T.B., Binary Alloy Phase Diagrams, Massalski, T.B., Ed., Materials Park, Ohio: Materials Information Soc., 1990, 2nd ed.

  22. Maslennikov, A., Fourest, B., David, F., and Masson, M., Radiochim. Acta, 2003, vol. 91, p. 761.

    CAS  Google Scholar 

  23. Connick, R.E. and Hurley, C.R., J. Am. Chem. Soc., 1952, vol. 74, p. 5012.

    Article  CAS  Google Scholar 

  24. Patel, A. and Richens, D.T., Inorg. Chem., 1991, vol. 30, p. 3789.

    Article  CAS  Google Scholar 

  25. Osman, J.R., Crayston, J.A., and Richens, D.T., Inorg. Chem., 1998, vol. 37, p. 1665.

    Article  CAS  Google Scholar 

  26. Mousset, F., Eysseric, C., and Bedioui, F., Studies of dissolution solutions of ruthenium metal, oxide and mixed compounds in nitric acid, Proc. ATALANTE 2004, Nîmes (France), June 21–25, 2004.

    Google Scholar 

  27. Mousset, F., Bedioui, F., and Eysseric, C., Electrochem. Commun., 2004, vol. 6, p. 351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Poineau.

Additional information

Dedicated to Dr. Sci. (Chem.) A.G. Maslennikov (1955–2016), a gifted electro- and radiochemist

Published in Russian in Radiokhimiya, 2017, Vol. 59, No. 1, pp. 39–44.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poineau, F., Koury, D.J., Bertoia, J. et al. Electrochemical studies of technetium–ruthenium alloys in HNO3: Implications for the behavior of technetium waste forms. Radiochemistry 59, 41–47 (2017). https://doi.org/10.1134/S1066362217010040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1066362217010040

Keywords

Navigation