Skip to main content
Log in

Simulation of folded and scrolled packings of carbon nanoribbons

  • Graphenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A simple model of a molecular chain on the plane, which allows the description of folded and scrolled packings of graphene nanoribbons, has been proposed. Using this model, possible steady states of single-walled graphene nanoribbons have been obtained, their stability has been shown, and their energy has been calculated as a function of the nanoribbon length L. The results obtained have been easily interpreted taking into account that the formation of van der Waals bonds results in an energy gain, while the bending of the nanoribbon leads to an energy loss. It has been shown that, at L > 13.39 nm, the minimum energy among the studied conformations is inherent in the scrolled packing, which is possible for nanoribbons with length L ⩾ 5.77 nm. For shorter nanoribbons, only the plane form exists. The simplicity of the proposed model allows the consideration of the dynamics of longer graphene nanoribbon rolls at rather long time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  3. C. Soldano, A. Mahmood, and E. Dujardin, Carbon 48, 2127 (2010).

    Article  Google Scholar 

  4. J. A. Baimova, B. Liu, S. V. Dmitriev, and K. Zhou, Phys. Status Solidi RRL 8, 336 (2014).

    Article  Google Scholar 

  5. J. A. Baimova, B. Liu, S. V. Dmitriev, N. Srikanth, and K. Zhou, Phys. Chem. Chem. Phys. 16, 19505 (2014).

    Article  Google Scholar 

  6. J. A. Baimova, E. A. Korznikova, S. V. Dmitriev, B. Liu, and K. Zhou, Rev. Adv. Mater. Sci. 39, 69 (2014).

    Google Scholar 

  7. W. Bollmann and J. Spreadborough, Nature (London) 186, 29 (1960).

    Article  ADS  Google Scholar 

  8. G. Cheng, I. Calizo, X. Liang, B. A. Sperling, A. C. Johnston-Peck, W. Li, J. E. Maslar, C. A. Richtera, and A. R. H. Walker, Carbon 76, 257 (2014).

    Article  Google Scholar 

  9. Sh. Q. Zhou, C. Y. Qiu, Sh. C. Yang, F. Yu, M. J. Chen, L. J. Hu, Y. J. Guo, and L. F. Sun, Chem. Phys. Lett. 501, 475 (2011).

    Article  ADS  Google Scholar 

  10. X. Chen, R. A. Boulos, J. F. Dobson, and C. L. Raston, Nanoscale 5, 498 (2013).

    Article  ADS  Google Scholar 

  11. M. V. Savoskin, V. N. Mochalin, A. P. Yaroshenko, N. I. Lazareva, T. E. Konstantinova, I. V. Barsukov, and I. G. Prokofiev, Carbon 45, 2797 (2007).

    Article  Google Scholar 

  12. X. Xie, L. Ju, X. Feng, Y. Sun, R. Zhou, K. Liu, S. Fan, Q. Li, and K. Jiang, Nano Lett. 9, 2565 (2009).

    Article  ADS  Google Scholar 

  13. A. L. Chuvilin, V. L. Kuznetsov, and A. N. Obraztsov, Carbon 47, 3099 (2009).

    Article  Google Scholar 

  14. H. Pan, Y. Feng, and J. Lin, Phys. Rev. B: Condens. Matter 72, 085415 (2005).

    Article  ADS  Google Scholar 

  15. R. Rurali, V. R. Coluci, and D. S. Galvao, Phys. Rev. B: Condens. Matter 74, 085414 (2006).

    Article  ADS  Google Scholar 

  16. Y. Chen, J. Lu, and Z. Gao, J. Phys. Chem. C 111, 1625 (2007).

    Article  Google Scholar 

  17. X. Shi, N. M. Pugno, Y. Cheng, and H. Gao, J. Appl. Phys. 95, 163113 (2009).

    Google Scholar 

  18. B. V. C. Martins and D. S. Galvao, Nanotechnology 21, 075710 (2010).

    Article  ADS  Google Scholar 

  19. S. Huang, B. Wang, M. Feng, X. Xu, X. Cao, and Y. Wang, Surf. Sci. 634, 3 (2015).

    Article  Google Scholar 

  20. E. Perim, R. Paupitz, and D. S. Galvao, J. Appl. Phys. 113, 054306 (2013).

    Article  ADS  Google Scholar 

  21. Y. Wang, Sh. F. Zhan, C. Yang, Y. Xiang, and Y. Y. Zhang, Comput. Mater. Sci 96, 300 (2015).

    Article  Google Scholar 

  22. X. Shi, Y. Cheng, N. M. Pugno, and H. Gao, J. Appl. Phys. 96, 053115 (2010).

    Google Scholar 

  23. Z. Zhang and T. Li, Appl. Phys. Lett. 97, 081909 (2010).

    Article  ADS  Google Scholar 

  24. L. Chu, Q. Xue, T. Zhang, and C. Ling, J. Phys. Chem. C 115, 15217 (2011).

    Article  Google Scholar 

  25. N. Patra, Y. Song, and P. Kral, ACS Nano 5, 1798 (2011).

    Article  Google Scholar 

  26. Sh. Y. Song, S. F. Geng, M. R. An, and X. W. Zha, J. Appl. Phys. 113, 164305 (2013).

    Article  ADS  Google Scholar 

  27. Q. Yin and X. Shi, Nanoscale 5, 5450 (2013).

    Article  ADS  Google Scholar 

  28. X. Shi, N. M. Pugno, and H. Gao, Acta MeCh. Solida Sin. 23, 484 (2010).

    Article  Google Scholar 

  29. X. Shi, N. M. Pugno, and H. Gao, Int. J. Fract. 171, 163 (2011).

    Article  Google Scholar 

  30. V. R. Coluci, S. F. Braga, R. H. Baughman, and D. S. Galvao, Phys. Rev. B: Condens. Matter 75, 125404 (2007).

    Article  ADS  Google Scholar 

  31. S. F. Braga, V. R. Coluci, R. H. Baughman, and D. S. Galvao, Chem. Phys. Lett. 441, 78 (2007).

    Article  ADS  Google Scholar 

  32. X. Shi, Y. Cheng, N. M. Pugno, and H. Gao, Small 6, 739 (2010).

    Article  Google Scholar 

  33. X. Shi, Q. Yin, N. M. Pugno, and H. Gao, J. Appl. Mech. 81, 1014 (2013).

    Google Scholar 

  34. Z. Zhang, Y. Huang, and T. Li, J. Appl. Phys. 112, 063515 (2012).

    Article  ADS  Google Scholar 

  35. A. V. Savin, Y. S. Kivshar, and B. Hu, Phys. Rev. B: Condens. Matter 82, 195422 (2010).

    Article  ADS  Google Scholar 

  36. A. V. Savin and Yu. S. Kivshar, Europhys. Lett. 82, 66002 (2008).

    Article  ADS  Google Scholar 

  37. A. V. Savin, Y. S. Kivshar, and B. Hu, Europhys. Lett. 88, 26004 (2009).

    Article  ADS  Google Scholar 

  38. A. V. Savin, B. Hu, and Y. S. Kivshar, Phys. Rev. B: Condens. Matter 80, 195423 (2009).

    Article  ADS  Google Scholar 

  39. A. V. Savin and Y. S. Kivshar, Appl. Phys. Lett. 94, 111903 (2009).

    Article  ADS  Google Scholar 

  40. A. V. Savin and Y. S. Kivshar, Europhys. Lett. 89, 46001 (2010).

    Article  ADS  Google Scholar 

  41. A. V. Savin and Y. S. Kivshar, Phys. Rev. B: Condens. Matter 81, 165418 (2010).

    Article  ADS  Google Scholar 

  42. E. A. Korznikova, A. V. Savin, Yu. A. Baimova, S. V. Dmitriev, and R. R. Mulyukov, JETP Lett. 96 (4), 222 (2012).

    Article  ADS  Google Scholar 

  43. E. A. Korznikova, J. A. Baimova, and S. V. Dmitriev, Europhys. Lett. 102, 60004 (2013).

    Article  ADS  Google Scholar 

  44. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).

    Article  ADS  Google Scholar 

  45. J. A. Baimova, S. V. Dmitriev, K. Zhou, and A. V. Savin, Phys. Rev. B: Condens. Matter 86, 035427 (2012).

    Article  ADS  Google Scholar 

  46. S. V. Dmitriev, Yu. A. Baimova, A. V. Savin, and Yu. S. Kivshar’, JETP Lett. 93 (10), 571 (2011).

    Article  ADS  Google Scholar 

  47. Yu. A. Baimova, S. V. Dmitriev, A. V. Savin, and Yu. S. Kivshar’, Phys. Solid State 54 (4), 866 (2012).

    Article  ADS  Google Scholar 

  48. E. A. Korznikova and S. V. Dmitriev, J. Phys. D: Appl. Phys. 47, 345307 (2014).

    Article  Google Scholar 

  49. R. Zacharia, H. Ulbricht, and T. Hertel, Phys. Rev. B: Condens. Matter 69, 155406 (2004).

    Article  ADS  Google Scholar 

  50. A. Ludsteck, Acta. Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 28, 59 (1972).

    Article  ADS  Google Scholar 

  51. Y. X. Zhao and I. L. Spain, Phys. Rev. B: Condens. Matter 40, 993 (1989).

    Article  ADS  Google Scholar 

  52. W. B. Gauster and I. J. Fritz, J. Appl. Phys. 45, 3309 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Savin.

Additional information

Original Russian Text © A.V. Savin, E.A. Korznikova, S.V. Dmitriev, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 11, pp. 2278–2285.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savin, A.V., Korznikova, E.A. & Dmitriev, S.V. Simulation of folded and scrolled packings of carbon nanoribbons. Phys. Solid State 57, 2348–2355 (2015). https://doi.org/10.1134/S1063783415110293

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415110293

Keywords

Navigation