Skip to main content
Log in

Second optical harmonic near the surface of ferroelectric photonic crystals and photon traps

  • Proceedings of the XX All-Russia Conference on Physics of Ferroelectrics (VKS-XX) (Krasnoyarsk, Russia, August 18–22, 2014)
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on the results of experimental investigations of the generation of the second optical harmonic localized in a thin subsurface layer of ferroelectric photonic crystals and photon traps. To excite the second optical harmonic, a KGW: Yb solid-state pulsed-periodic laser generating the radiation with a wavelength of 1026 nm in a form of pulses ∼10−13 s long with a repetition frequency of 200 kHz at the average power of 0.1–3.5 W and power density of ∼109−1012 W/cm2 in a spot less than 100 μm in diameter focused near the surface was used. Ferroelectrics, notably, barium titanate or sodium nitrite, were introduced into the pores between SiO2 nanoglobules. It is established that the maximal conversion efficiency of the exciting radiation into the second optical harmonic was several percents. The generation characteristics of the second optical harmonic near the surface of photonic crystals filled with ferroelectrics are compared with the generation of the second optical harmonic in ferroelectric photon traps of barium titanate ceramics and sodium nitrite microcrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zernike and J. I. Midwinter, Applied Nonlinear Optics (Academic, New York, 1973).

    Google Scholar 

  2. R. C. Miller, Appl. Phys. Lett. 5, 17 (1964).

    Article  ADS  Google Scholar 

  3. G. D. Boyd, A. Ashkin, J. M. Dziedzic, and D. A. Kleinman, Phys. Rev. [Sect.] A 137, A1305 (1965).

    Article  ADS  Google Scholar 

  4. A. M. Agal’tsov, V. S. Gorelik, and V. N. Moiseenko, Kratk. Soobshch. Fiz., No. 5, 49 (1985).

    Google Scholar 

  5. A. M. Agal’tsov, V. S. Gorelik, A. K. Zvezdin, V. A. Murashov, and D. I. Rakov, Kratk. Soobshch. Fiz., No. 5, 37 (1989).

    Google Scholar 

  6. V. S. Gorelik, E. V. Zhabotinskii, and G. G. Mitin, Kvantovaya Elektron. (Moscow) 21, 363 (1994).

    Google Scholar 

  7. L. D. Rotter, D. L. Kaiser, and M. D. Vaudin, Appl. Phys. Lett. 68, 310 (1996).

    Article  ADS  Google Scholar 

  8. E. V. Bursian, V. G. Zalesskii, A. A. Luzhkov, and V. V. Maslov, JETP Lett. 64(4), 270 (1996).

    Article  ADS  Google Scholar 

  9. V. N. Moiseenko, V. S. Gorelik, and V. N. Sharaichuk, Kratk. Soobshch. Fiz., Nos. 5–6, 31 (1992).

    Google Scholar 

  10. E. Kim, A. Steinbruck, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, ACS Nano 7, 5343 (2013).

    Article  Google Scholar 

  11. B. G. Yust, N. Razavi, F. Pedraza, Z. Elliott, A. T. Tsin, and D. K. Sardar, Opt. Express 20, 26511 (2012).

    Article  ADS  Google Scholar 

  12. J. Martorell, R. Vilaseca, and R. Corbalán, Appl. Phys. Lett. 70, 702 (1997).

    Article  ADS  Google Scholar 

  13. Yu. Garbovskiy and A. Glushchenko, Appl. Opt. 52(22), E34 (2013).

    Article  ADS  Google Scholar 

  14. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, J. Opt. Soc. Am. B 25, 325 (2008).

    Article  ADS  Google Scholar 

  15. S. Gorelik, Quantum Electron. 37, 409 (2007).

    Article  ADS  Google Scholar 

  16. Yu. P. Voinov, N. F. Gabitova, V. S. Gorelik, L. I. Zlobina, and P. P. Sverbil’, Phys. Solid State 51(7), 1409 (2009).

    Article  ADS  Google Scholar 

  17. L. P. Avakyants, V. S. Gorelik, L. I. Zlobina, N. N. Mel’nik, P. P. Sverbil’, A. B. Fadyushin, and A. V. Chervyakov, Inorg. Mater. 42(6), 635 (2006).

    Article  Google Scholar 

  18. V. S. Gorelik, Yu. P. Voinov, V. D. Zvorykin, A. I. Lebo, I. G. Lebo, A. O. Levchenko, and N. N. Ustinovsky, J. Russ. Laser Res. 31, 80 (2010).

    Article  Google Scholar 

  19. V. M. Masalov, A. A. Zhokhov, V. S. Gorelik, E. A. Kudrenko, E. A. Shreinman, A. N. Tereshchenko, M. Yu. Maksimuk, A. V. Bazhenov, I. I. Zver’kova, and G. A. Emel’chenko, Phys. Solid State 52(4), 794 (2010).

    Article  Google Scholar 

  20. K. I. Zaytsev, V. S. Gorelik, A. M. Khorokhorov, and S. O. Yurchenko, J. Phys.: Conf. Ser. 486, 012003 (2014).

    ADS  Google Scholar 

  21. G. M. Katyba and V. S. Gorelik, J. Phys.: Conf. Ser. 486, 012020 (2014).

    ADS  Google Scholar 

  22. K. I. Zaytsev, G. M. Katyba, E. V. Yakovlev, V. S. Gorelik, and S. O. Yurchenko, J. Appl. Phys. 115, 213505 (2014).

    Article  ADS  Google Scholar 

  23. P. A. Norreys, M. Zepf, S. Moustaizis, A. P. Fews, J. Zhang, P. Lee, M. Bakarezos, C. N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F. N. Walsh, J. S. Wark, and A. E. Dangor, Phys. Rev. Lett. 76, 1832 (1996).

    Article  ADS  Google Scholar 

  24. R. A. Ganeev, Phys.—Usp. 52(1), 55 (2009).

    Article  ADS  Google Scholar 

  25. R. A. Ganeev, Phys.—Usp. 56(8), 772 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Gorelik.

Additional information

Original Russian Text © Yu.P. Voinov, V.S. Gorelik, K.I. Zaitsev, L.I. Zlobina, P.P. Sverbil’, S.O. Yurchenko, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 3, pp. 443–449.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voinov, Y.P., Gorelik, V.S., Zaitsev, K.I. et al. Second optical harmonic near the surface of ferroelectric photonic crystals and photon traps. Phys. Solid State 57, 453–459 (2015). https://doi.org/10.1134/S106378341503035X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341503035X

Keywords

Navigation