Skip to main content
Log in

Laser diodes with several emitting regions (λ = 800–1100 nm) on the basis of epitaxially integrated heterostructures

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of a series of studies concerned with formation of epitaxially integrated InGaAs/AlGaAs and AlGaAs/AlGaAs heterostructures with several emitting regions and with investigation of properties of laser diodes based on the above structures operating in the spectral ranges λ = 800–810, 890–910, and 1040–1060 nm are summarized. It is shown that the suggested approach to integration of individual laser structures by the method of the MOVPE epitaxy operates efficiently in fabrication of laser diodes for a wide spectral range on the basis of various types of heterostructures. This approach made it possible to efficiently increase the output power of the laser diodes practically without variation in their mass-and-dimension characteristics. The main advantages of this approach and its limitations are outlined. Epitaxial integration of two laser heterostructures made it possible to increase the differential quantum efficiency by 1.7–2.0 times, while integration of three laser heterostructures increases the differential quantum efficiency by a factor of 2.5–3.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Van der Ziel and W. T. Tsang, Appl. Phys. Lett. 41, 499 (1982).

    Article  ADS  Google Scholar 

  2. Ch. Garcia, E. Rosencher, Ph. Collot, N. Laurent, J. L. Guyaux, B. Vinter, and J. Nagle, Appl. Phys. Lett. 71, 3752 (1997).

    Article  ADS  Google Scholar 

  3. S. G. Patterson, G. S. Pertich, R. J. Ram, and L. A. Kolidziejski, Electron. Lett. 35, 395 (1999).

    Article  Google Scholar 

  4. M. V. Zverkov, V. P. Konyaev, V. V. Krichevskii, M. A. Ladugin, A. A. Marmalyuk, A. A. Padalitsa, V. A. Simakov, and A. V. Sukharev, Kvant. Elektron. 38, 989 (2008) [Quantum Electron. 38, 989 (2008)].

    Article  ADS  Google Scholar 

  5. D. A. Vinokurov, V. P. Konyaev, M. A. Ladugin, A. V. Lyutetskii, A. A. Marmalyuk, A. A. Padalitsa, A. N. Petrunov, N. A. Pikhtin, V. A. Simakov, S. O. Slipchenko, A. V. Sukherev, N. V. Fetisova, V. V. Shamakhov, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 44, 251 (2010) [Semiconductors 44, 238 (2010)].

    Google Scholar 

  6. E. I. Davydova, M. V. Zverkov, V. P. Konyaev, V. V. Krichevskii, M. A. Ladugin, A. A. Marmalyuk, A. A. Padalitsa, V. A. Ismakov, A. V. Sukharev, and M. B. Uspenskii, Kvant. Elektron. 39, 723 (2009) [Quantum Electron. 39, 723 (2009)].

    Article  ADS  Google Scholar 

  7. C. Hanke, L. Korte, B. D. Acklin, M. Behringer, G. Herrmann, J. Luft, B. DeOdorico, M. Marchiano, and J. Wilhelmi, Proc. SPIE 3947, 50 (2000).

    Article  ADS  Google Scholar 

  8. G. Shen, P. Lian, X. Guo, T. Yin, C. Chen, T. Wang, J. Du, B. Cui, J. Li, J. Liu, G. Gao, D. Zou, and L. Chen, Proc. SPIE 4225, 327 (2000).

    Article  ADS  Google Scholar 

  9. R. Q. Yang and Y. Qiu, Appl. Phys. Lett. 83, 599 (2003).

    Article  ADS  Google Scholar 

  10. M. Behringer, F. Eberhard, G. Herrmann, J. Luft, J. Maric, S. Morgott, M. C. Philippens, and W. Teich, Proc. SPIE 4831, 4 (2003).

    Article  ADS  Google Scholar 

  11. G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd ed. (San Diego Academic Press, 1999).

  12. D. A. Vinokurov, M. A. Ladugin, A. A. Marmalyuk, A. A. Padalitsa, N. A. Pikhtin, V. A. Simakov, A. V. Sukharev, N. V. Fetisova, V. V. Shamakhov, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 43, 1253 (2009) [Semiconductors 43, 1213 (2009)].

    Google Scholar 

  13. P. B. Bulaev, A. A. Marmalyuk, A. A. Padalitsa, D. B. Nikitin, A. V. Petrovskii, I. D. Zalevskii, V. P. Konyaev, V. V. Os’kin, M. V. Zverkov, V. A. Simakov, and G. M. Zverev, Kvant. Elektron. 32, 213 (2002) [Quantum Electron. 32, 213 (2002)].

    Article  ADS  Google Scholar 

  14. S. O. Slipchenko, N. A. Pikhtin, N. V. Fetisova, M. A. Khomylev, A. A. Marmalyuk, D. B. Nikitin, A. A. Padalitsa, P. V. Bulaev, I. D. Zalevskii, and I. S. Tarasov, Pis’ma Zh. Tekh. Fiz. 29, 26 (2003) [Tech. Phys. Lett. 29, 980 (1993)].

    Google Scholar 

  15. S. O. Slipchenko, D. A. Vinokurov, N. A. Pikhtin, Z. N. Sokolova, A. L. Stankevich, I. S. Tarasov, and Zh. I. Alferov, Fiz. Tekh. Poluprovodn. 38, 1477 (2004) [Semiconductors 38, 1430 (2004)].

    Google Scholar 

  16. A. Yu. Andreev, A. Yu. Leshko, A. V. Lyutetskii, A. A. Marmalyuk, T. A. Nalet, A. A. Padalitsa, N. A. Pikhtin, D. R. Sabitov, V. A. Simakov, S. A. Slipchenko, M. A. Khomylev, and I. S. Tarasov, Fiz. Tekh. Poluprovodn. 40, 628 (2006) [Semiconductors 40, 611 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Marmalyuk.

Additional information

Original Russian Text © A.A. Marmalyuk, E.I. Davydova, M.V. Zverkov, V.P. Konyaev, V.V. Krichevsky, M.A. Ladugin, E.I. Lebedeva, S.V. Petrov, S.M. Sapozhnikov, V.A. Simakov, M.B. Uspenskiy, I.V. Yarotskaya, N.A. Pikhtin, I.S. Tarasov, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 4, pp. 528–534.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmalyuk, A.A., Davydova, E.I., Zverkov, M.V. et al. Laser diodes with several emitting regions (λ = 800–1100 nm) on the basis of epitaxially integrated heterostructures. Semiconductors 45, 519–525 (2011). https://doi.org/10.1134/S1063782611040154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611040154

Keywords

Navigation