Skip to main content
Log in

Motion of negative ion plasma near the boundary with electron−ion plasma

  • Plasma Kinetics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Processes occurring near the boundary between three-component plasma with negative ions and two-component electron−ion plasma are considered. The excited waves and instability are described. Stability condition at the boundary is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Goeler, T. Ohe, and N. D’Angelo, J. Appl. Phys. 37, 2519 (1966).

    Article  ADS  Google Scholar 

  2. A. Y. Wong, D. L. Mamas, and D. Arnush, Phys. Fluids 18, 1489 (1975).

    Article  ADS  Google Scholar 

  3. G. O. Ludwig, J. L. Ferreira, and Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984).

    Article  ADS  Google Scholar 

  4. R. Ichiki, M. Shindo, S. Yoshimura, T. Watanabe, and Y. Kawai, Phys. Plasmas 8, 4275 (2001).

    Article  ADS  Google Scholar 

  5. N. Sato, Plasma Sources Sci. Technol. 3, 395 (1994).

    Article  ADS  Google Scholar 

  6. J. L. Cooney, D. W. Aossey, J. E. Williams, M. T. Gavin, H. S. Kim, Y.-C. Hsu, A. Scheller, and K. E. Lonngren, Plasma Sources Sci. Technol. 2, 73 (1993).

    Article  ADS  Google Scholar 

  7. M. Bacal and G. W. Hamilton, Phys. Rev. Lett. 42, 1538 (1979).

    Article  ADS  Google Scholar 

  8. T. H. Ahn, K. Nakamura, and H. Sugai, Plasma Sources Sci. Technol. 5, 139 (1996).

    Article  ADS  Google Scholar 

  9. X. Yang, M. Moravej, S. E. Babayan, G. R. Nowling, and R. F. Hicks, Plasma Sources Sci. Technol. 14, 412 (2005).

    Article  ADS  Google Scholar 

  10. T. Hirata, R. Hatakeyama, T. Mieno, S. Iizuka, and N. Sato, Plasma Sources Sci. Technol. 5, 288 (1996).

    Article  ADS  Google Scholar 

  11. N. Sato, T. Mieno, T. Hirata, Y. Yagi, R. Hatakeyama, and S. Iizuka, Phys. Plasmas 1, 3480 (1994).

    Article  ADS  Google Scholar 

  12. W. Oohara, R. Hatakeyama, and S. Ishiguro, Plasma Phys. Controlled Fusion 44, 1299 (2002).

    Article  ADS  Google Scholar 

  13. W. Oohara, R. Hatakeyama, and S. Ishiguro, Phys. Rev. E 68, 066407 (2003).

    Article  ADS  Google Scholar 

  14. W. W. Byszewski, J. Appl. Phys. 66, 103 (1989).

    Article  ADS  Google Scholar 

  15. L. D. Tsendin, Sov. Phys. Tech. Phys. 34, 11 (1989).

    Google Scholar 

  16. S. A. Gutsev, A. A. Kudryavtsev, and V. A. Romanenko, Tech. Phys. 40, 1131 (1995).

    Google Scholar 

  17. V. I. Kolobov and D. J. Economou, Apll. Phys. Lett. 72, 656 (1998).

    Article  ADS  Google Scholar 

  18. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, V. I. Molotkov, and O. F. Petrov, Phys. Usp. 47, 447 (2004).

    Article  ADS  Google Scholar 

  19. O. S. Vaulina, O. F. Petrov, V. E. Fortov, A. G. Khrapak, and S. A. Khrapak, Dusty Plasma: Experiment and Theory (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  20. N. D'Angelo, S. Goeler, and T. Ohe, Phys. Fluids 9, 1605 (1966).

    Article  ADS  Google Scholar 

  21. G. C. Das and S. G. Tagare, Plasma Phys. 17, 1025 (1975).

    Article  ADS  Google Scholar 

  22. Y. Nakamura, T. Odagiri, and I. Tsukabayashi, Plasma Phys. Controlled Fusion 39, 105 (1997).

    Article  ADS  Google Scholar 

  23. Y. Nakamura and I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984).

    Article  ADS  Google Scholar 

  24. J. L. Cooney, D. W. Aossey, J. E. Williams, and K. E. Lonngren, Phys. Rev. E 47, 564 (1993).

    Article  ADS  Google Scholar 

  25. T. Takeuchi, S. Iizuka, and N. Sato, Phys. Rev. Lett. 80, 77 (1998).

    Article  ADS  Google Scholar 

  26. S. Yi, J. L. Cooney, H.-S. Kim, A. Amin, Y. El-Zein, and K. E. Lonngren, Phys. Plasmas 3, 529 (1996).

    Article  ADS  Google Scholar 

  27. J. F. McKenzie, F. Verheest, T. B. Doyle, and M. A. Hellberg, Phys. Plasmas 11, 1762 (2004).

    Article  ADS  Google Scholar 

  28. A. E. Dubinov, I. D. Dubinova, and V. A. Gordienko, Phys. Plasmas 13, 082111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  29. Yu. V. Medvedev, Plasma Phys. Controlled Fusion 41, 303 (1999).

    Article  ADS  Google Scholar 

  30. Yu. V. Medvedev, Plasma Phys. Rep. 36, 507 (2010).

    Article  ADS  Google Scholar 

  31. A. A. Ivanov, L. I. Elizarov, M. Bacal, and A. B. Sionov, Phys. Rev. E 52, 6679 (1995).

    Article  ADS  Google Scholar 

  32. Yu. V. Medvedev, Plasma Phys. Controlled Fusion 44, 1449 (2002).

    Article  ADS  Google Scholar 

  33. M. Tuszewski and S. P. Gary, Phys. Plasmas 10, 539 (2003).

    Article  ADS  Google Scholar 

  34. M. Tuszewski, R. R. White, and G. A. Wurden, Plasma Sources Sci. Technol. 12, 396 (2003).

    Article  ADS  Google Scholar 

  35. A. V. Gurevich and A. P. Meshcherkin, Sov. Phys. JETP 60, 732 (1984).

    Google Scholar 

  36. A. V. Gurevich, R. Z. Sagdeev, S. I. Anisimov, and Yu. V. Medvedev, Sov. Sci. Rev. A 13, 1 (1989).

    Google Scholar 

  37. Yu. V. Medvedev, Nonlinear Phenomena during Discontinuity Decay in Rarefied Plasma (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Medvedev.

Additional information

Original Russian Text © Yu.V. Medvedev, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 1, pp. 29–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, Y.V. Motion of negative ion plasma near the boundary with electron−ion plasma. Plasma Phys. Rep. 43, 37–43 (2017). https://doi.org/10.1134/S1063780X17010093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17010093

Navigation