Skip to main content
Log in

Theoretical and computational study of instability in streaming negative ion plasma under static magnetic field

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The instability and electrostatic wave modes generation in a cold negative ion plasma which streams across a static magnetic field has been analysed by fluid dynamical model and computer simulation technique. In the theoretical approach, we observed different kinds of acoustic modes and cyclotron modes at an oblique angle to the static magnetic field. At some critical wave number, the positive and negative ion acoustic modes split up into two, fast and slow waves. The value of critical wave numbers and wave growth rates depends on the plasma streaming velocity, electron concentration in the system, and magnetic field intensity. In the presence of high intense external magnetic fields, we observed a wave coupling between different electrostatic modes. With the help of computer simulation performed by the Particle In Cell method, we confirmed the presence of theoretically proposed wave modes and studied the evolution of instability in detail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Fehsenfeld, D. Albritton, J. Burt, H. Schiff, Can. J. Chem. 47, 1793 (1969)

    Article  Google Scholar 

  2. M. Mendlino, J. Forbes, J. Geophys. Res. Space Phys. 87, 8273 (1982)

    Article  ADS  Google Scholar 

  3. P. Chaizy, H. Reme, J.A. Sauvaud, C. d’Uston, R.P. Lin, D.E. Larson, D.L. Mitchell, K.A. Anderson, C.W. Carlson, A. Korth, D.A. Mendis, Nature 349, 393 (1991)

    Article  ADS  Google Scholar 

  4. A. Coates, F. Crary, G. Lewis, D. Young, J. Waite, E. Sittler, Geophys. Res. Lett. 34, L22103 (2007)

    Article  ADS  Google Scholar 

  5. W. Oohara, R. Hatakeyama, Phys. Rev. Lett. 91, 205005 (2003)

    Article  ADS  Google Scholar 

  6. W. Oohara, D. Date, R. Hatakeyama, Phys. Rev. Lett. 95, 175003 (2005)

    Article  ADS  Google Scholar 

  7. P.K. Shukla, M. Khan, Phys. Plasmas 12, 014504 (2005)

    Article  ADS  Google Scholar 

  8. G. Das, S. Tagare, Plasma Phys. 17, 1025 (1975)

    Article  ADS  Google Scholar 

  9. G. Das, Plasma Phys. 19, 363 (1977)

    Article  ADS  Google Scholar 

  10. G. Ludwig, J. Ferreira, Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984)

    Article  ADS  Google Scholar 

  11. S. Tagare, J. Plasma Phys. 36, 301 (1986)

    Article  ADS  Google Scholar 

  12. S. Tagare, R.V. Reddy, Plasma Phys. Controlled Fusion 29, 671 (1987)

    Article  ADS  Google Scholar 

  13. D.N. Gao, Y.R. Ma, Y. Yang, J. Zhang, W.S. Duan, Indian J. Phys. 90, 1313 (2016)

    Article  ADS  Google Scholar 

  14. M. Mobarak Hossena, M.S. Alam, S. Sultana, A.A. Mamun, Phys. Plasmas 23, 023703 (2016)

    Article  ADS  Google Scholar 

  15. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Adv. Space Res. 57, 813 (2016)

    Article  ADS  Google Scholar 

  16. N.F. Cramer, F. Verheest, Phys. Plasmas 25, 123702 (2018)

    Article  Google Scholar 

  17. A. Wong, D. Mamas, D. Arnush, Phys. Fluids 18, 1489 (1975)

    Article  ADS  Google Scholar 

  18. T. Intrator, N. Hershkowitz, R. Stern, Phys. Fluids 26, 1942 (1983)

    Article  ADS  Google Scholar 

  19. B. Song, N. D’Angelo, R.L. Merlino, Phys. Fluids B: Plasma Phys. 3, 284 (1991)

    Article  Google Scholar 

  20. T. Takeuchi, S. Iizuka, N. Sato, Phys. Rev. Lett. 80, 77 (1998)

    Article  ADS  Google Scholar 

  21. Q. Luo, N. D’angelo, L.R. Merlino, Phys. Plasmas 5, 2868 (1998)

    Article  ADS  Google Scholar 

  22. A. Kumar, V. Mathew, Phys. Plasmas 24, 092107 (2017)

    Article  ADS  Google Scholar 

  23. Y. Nakamura, J.L. Ferreira, G.O. Ludwig, J. Plasma Phys. 33, 237 (1985)

    Article  ADS  Google Scholar 

  24. D.W. Aossey, A. Amin, J. Cooney, H.S. Kim, B.T. Nguyen, E. Lonngren, Plasma Sources Sci. Technol. 2, 229 (1993)

    Article  ADS  Google Scholar 

  25. D. Boruah, A.R. Pal, H. Bailung, J. Chutia, J. Phys. D: Appl. Phys. 36, 645 (2003)

    Article  ADS  Google Scholar 

  26. C. Birdsall, A. Langdon, Plasma Physics via Computer Simulation, Series in Plasma Physics and Fluid Dynamics (Taylor and Francis, 2004)

  27. H. Matsumoto, Y. Omura, Computer Space Plasma Physics (Terra Scientific Publishing, Tokyo, 1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Mathew.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mathew, V. Theoretical and computational study of instability in streaming negative ion plasma under static magnetic field. Eur. Phys. J. D 74, 65 (2020). https://doi.org/10.1140/epjd/e2020-100561-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100561-4

Keywords

Navigation