Skip to main content
Log in

Specific features of the structure of the Z-pinch emitting region formed during the implosion of a foam-wire load at the ANGARA-5-1 facility

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results are presented from experimental studies of the structure of the compressed plasma of a Z-pinch produced during the implosion of a foam-wire load at the current of up to 3 MA. The foam-wire load consisted of two nested cylindrical cascades, one of which was a solid or hollow cylinder made of low-density agar-agar foam, while the other was a wire array. The wall thickness of a hollow foam cylinder was 100–200 μm. The images of the pinch and its spectrum obtained with the help of multiframe X-ray cameras and a grazing incidence spectrograph with a spatial resolution were analyzed. Data on the spatial structure of the emitting regions and the soft X-ray (SXR) spectrum of the Z-pinch in the final stage of compression of a foam-wire load were obtained. The implosion modes characterized by the formation of hot regions during implosion of such loads were revealed. The characteristic scale lengths of the hot regions were determined. It is shown that the energy distribution of SXR photons in the energy range from 80 eV to 1 keV forms the spatial structure of Z-pinch images recorded during the implosion of foam-wire loads. It is revealed that the spectral density of SXR emission in the photon energy range of 300–600 eV from hot Z-pinch regions exceeds the spectral density of radiation from the neighboring Z-pinch regions by more than one order of magnitude. Groups of lines related to the absorption and emission of radiation by atoms and multicharged ions of carbon and oxygen in the outer foam cascade of a foam-wire load were recorded for the first time by analyzing the spatial distribution of the SXR spectra of multicharged ions of the Z-pinch. The groups of absorption lines of ions (C III, O III, O IV, and O VI) corresponding to absorption of SXR photons in the Z-pinch of a tungsten wire array, which served as the inner cascade of a foam-wire load, were identified. The plasma electron temperature measured from the charge composition of carbon and oxygen ions in the outer agar-agar foam cascade was 10–40 eV. During the implosion of foam-wire loads at currents of up to 3 MA, SXR pulses (hν > 100 eV) with a duration of 10 ns and peak power of 3 TW were detected. It is shown that the temporal profile of single-peak and double-peak SXR pulses can be controlled by varying the parameters of the outer and inner cascades of the foam-wire load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Cohen, U. Feldman, M. Swarz, and J. H. Underwood, J. Opt. Soc. Am. 58, 843 (1968).

    Article  ADS  Google Scholar 

  2. E. D. Korop, B. E. Meierovich, Yu. V. Sidel’nikov, and S. T. Sukhorukov, Sov. Phys. Usp. 22, 727 (1979).

    Article  ADS  Google Scholar 

  3. C. Stallings, K. Childers, I. Roth, and R. Schneider, Appl. Phys. Lett. 35, 524 (1979).

    Article  ADS  Google Scholar 

  4. A. Bartnik, G. V. Ivanenkov, L. Kappinski, et al., Quant. Electron. 23, 975 (1993).

    Article  ADS  Google Scholar 

  5. V. A. Burtsev, V. A. Gribkov, and T. I. Filippova, Itogi Nauki Tekh., Ser. Fiz. Plazmy 2, 80 (1981).

    Google Scholar 

  6. J. Abdallah, R. E. H. Clark, A. Y. Faenov, et al., J. Quant. Spectrosc. Radiat. Transfer 62, 85 (1999).

    Article  ADS  Google Scholar 

  7. S. V. Lebedev and A. I. Savatimskii, Sov. Phys. Usp. 27, 749 (1984).

    Article  ADS  Google Scholar 

  8. Exploding Wires, Ed. by W. G. Chace and H. K. Moor (Plenum, New York, 1959; Mir, Moscow, 1965).

    Google Scholar 

  9. A. Bartnik, G. V. Ivanenkov, L. Karpinski, et al., Quant. Electron. 24, 169 (1994).

    Article  ADS  Google Scholar 

  10. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomenskii, et al., Sov. J. Plasma Phys. 9, 271 (1983).

    Google Scholar 

  11. V. L. Afonin, D. N. Litvin, V. A. Podgornov, and A. V. Senik, Plasma Phys. Rep. 25, 728 (1999).

    ADS  Google Scholar 

  12. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomenskii, et al., Sov. Tech. Phys. Lett. 9, 512 (1983).

    Google Scholar 

  13. N. Qi, D. A. Hammer, D. H. Kalantar, et al., AIP Conf. Proc. 195, 71 (1989).

    Article  ADS  Google Scholar 

  14. S. V. Lebedev, F. N. Beg, S. A. Pikuz, et al., Phys. Rev. Lett. 85, 98 (2000).

    Article  ADS  Google Scholar 

  15. T. A. Shelkovenko, S. A. Pikuz, J. D. Douglass, et al., IEEE Trans. Plasma Sci. 34, 2336 (2006).

    Article  ADS  Google Scholar 

  16. I. K. Aivazov, V. D. Vikharev, G. S. Volkov, et al., Sov. J. Plasma Phys. 14, 110 (1988).

    Google Scholar 

  17. M. B. Bekhtev, V. D. Vikharev, S. V. Zakharov, et al., Sov. Phys. JETP 68, 955 (1989).

    Google Scholar 

  18. V. V. Aleksandrov, A. V. Branitskii, G. S. Volkov, et al., Plasma Phys. Rep. 27, 89 (2001).

    Article  ADS  Google Scholar 

  19. R. B. Spielman, C. Deeney, G. A. Chandler, et al., Phys. Plasmas 5, 2105 (1998).

    Article  ADS  Google Scholar 

  20. M. E. Cuneo, E. M. Waisman, S. V. Lebedev, et al., Phys. Rev. E 71, 046406 (2005).

    Article  ADS  Google Scholar 

  21. V. D. Selemir, V. A. Demidov, V. F. Ermolovich, et al., Plasma Phys. Rep. 33, 381 (2007).

    Article  ADS  Google Scholar 

  22. V. V. Aleksandrov, G. S. Volkov, E. V. Grabovskii, et al., Plasma Phys. Rep. 38, 315 (2012).

    Article  ADS  Google Scholar 

  23. E. V. Grabovskii, V. V. Aleksandrov, G. S. Volkov, et al., Plasma Phys. Rep. 34, 815 (2008).

    Article  ADS  Google Scholar 

  24. E. V. Grabovskii, G. G. Zukakishvili, S. L. Nedoseev, et al., Plasma Phys. Rep. 30, 30 (2004).

    Article  ADS  Google Scholar 

  25. E. V. Grabovskii, G. M. Oleinik, and I. Yu. Porofeev, Plasma Phys. Rep. 32, 475 (2006).

    Article  ADS  Google Scholar 

  26. S. S. Anan’ev, S. A. Dan’ko, and Yu. G. Kalinin, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 2, 43 (2009).

  27. V. V. Vikhrev, Sov. J. Plasma Phys. 3, 539 (1977).

    Google Scholar 

  28. V. V. Vikhrev, JETP Lett. 27, 95 (1978).

    ADS  Google Scholar 

  29. V. V. Vikhrev, V. V. Ivanov, and K. N. Koshelev, Sov. J. Plasma Phys. 8, 688 (1982).

    Google Scholar 

  30. P. S. Antsiferov, V. V. Vikhrev, V. V. Ivanov, and K. N. Koshelev, Sov. J. Plasma Phys. 16, 592 (1990).

    Google Scholar 

  31. E. V. Aglitskii, V. V. Vikhrev, A. V. Gulov, et al., Spectroscopy of Multicharged Ions in Hot Plasmas (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  32. S. A. Pikuz, B. A. Bryunetkin, G. V. Ivanenkov, et al., J. Quant. Spectrosc. Radiat. Transfer 51, 291 (1994).

    Article  ADS  Google Scholar 

  33. V. L. Kantsyrev, D. A. Fedin, A. S. Shlyaptseva, et al., Phys. Plasmas 10, 2519 (2003).

    Article  ADS  Google Scholar 

  34. S. S. Anan’ev, Yu. L. Bakshaev, P. I. Blinov, et al., Plasma Phys. Rep. 35, 459 (2009).

    Article  ADS  Google Scholar 

  35. S. S. Anan’ev, Yu. L. Bakshaev, P. I. Blinov, et al., JETP Lett. 87, 364 (2008).

    Article  ADS  Google Scholar 

  36. V. V. Alexandrov, I. N. Frolov, M. V. Fedulov, et al., IEEE Trans. Plasma Sci. 30, 559 (2002).

    Article  ADS  Google Scholar 

  37. P. V. Sasorov, B. V. Oliver, E. P. Yu, and T. A. Mehlhorn, Phys. Plasmas 15, 022702 (2008).

    Article  ADS  Google Scholar 

  38. S. V. Lebedev, F. N. Beg, S. N. Bland, et al., Phys. Plasmas 8, 3734 (2001).

    Article  ADS  Google Scholar 

  39. G. G. Zukakishvili, K. N. Mitrofanov, E. V. Grabovskii, et al., Plasma Phys. Rep. 31, 908 (2005).

    Article  ADS  Google Scholar 

  40. S. V. Zakharov, V. P. Smirnov, A. V. Gasilov, et al., Preprint No. 4587/6 (Kurchatov Inst., Moscow, 1988).

  41. V. P. Smirnov, Plasma Phys. Controlled Fusion 33, 1697 (1991).

    Article  ADS  Google Scholar 

  42. E. V. Grabovski, O. Yu. Vorob’ev, K. S. Dyabilin, et al., JETP 82, 445 (1996).

    ADS  Google Scholar 

  43. T. J. Nash, M. S. Derzon, G. A. Chandler, et al., Phys. Plasmas 6, 2023 (1999).

    Article  ADS  Google Scholar 

  44. R. W. Lemke, R. A. Vesey, M. E. Cuneo, et al., in Proceedings of the IEEE International Conference “Megagauss Magnetic Generation and Related Topics,” Santa Fe, NM, 2006, Ed. by G. F. Kiuttu, P. J. Turchi, and R. Reinovsky, p. 507.

  45. J. H. Hammer, M. Tabak, S. C. Wilks, et al., Phys. Plasmas 6, 2129 (1999).

    Article  ADS  Google Scholar 

  46. V. V. Aleksandrov, E. V. Grabovski, A. N. Gritsuk, et al., Plasma Phys. Rep. 36, 482 (2010).

    Article  ADS  Google Scholar 

  47. D. D. Ryutov, M. S. Derzon, and M. K. Matzen, Rev. Mod. Phys. 72, 167 (2000).

    Article  ADS  Google Scholar 

  48. Z. P. Xu, Z. H. Li, R. K. Xu, et al., in Proceedings of the 32nd EPS Conference on Plasma Physics, Tarragona, 2005, ECA 29C, P–1.133 (2005).

    ADS  Google Scholar 

  49. R. H. Day and P. Lee, J. Appl. Phys. 52, 6965 (1981).

    Article  ADS  Google Scholar 

  50. Wm. J. Veigele, At. Data Tables 5, 51 (1973).

    Article  ADS  Google Scholar 

  51. A. P. Shevel’ko, D. E. Bliss, E. D. Kazakov, et al., Plasma Phys. Rep. 34, 944 (2008).

    Article  ADS  Google Scholar 

  52. A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, et al., Phys. Scr. 57, 276 (1998).

    Article  ADS  Google Scholar 

  53. I. I. Sobel’man, A. P. Shevel’ko, O. F. Yakushev, et al., Quant. Electron. 33, 3 (2003).

    Article  ADS  Google Scholar 

  54. A. P. Shevel’ko and O. F. Yakushev, Poverkhnost’, No. 2, 53 (2003).

  55. R. R. Gayazov, K. N. Koshelev, V. M. Krivtsun, et al., in Proceedings of the XV Symposium “Nanophysics and Nanoelectronics,” Nizhni Novgorod, 2011, Vol. 1, p. 147.

  56. A. P. Shevel’ko, Quant. Electron. 26, 729 (1996).

    Article  ADS  Google Scholar 

  57. A. P. Shevel’ko, in Proceedings of the XIII Symposium “Nanophysics and Nanoelectronics,” Nizhni Novgorod, 2009, Vol. 1, p. 229.

  58. A. V. Branitskii and G. M. Oleinik, Instrum. Exp. Tech. 43, 486 (2000).

    Article  Google Scholar 

  59. G. S. Volkov, E. V. Grabovskii, V. I. Zaitsev, et al., Instrum. Exp. Tech. 47, 201 (2004).

    Article  Google Scholar 

  60. M. M. Basko, P. V. Sasorov, M. Murakami, et al., Plasma Phys. Controlled Fusion 54, 055003 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mitrofanov.

Additional information

Original Russian Text © K.N. Mitrofanov, E.V. Grabovski, A.N. Gritsuk, Ya.N. Laukhin, V.V. Aleksandrov, G.M. Oleinik, S.F. Medovshchikov, A.P. Shevel’ko, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 1, pp. 71–96.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrofanov, K.N., Grabovski, E.V., Gritsuk, A.N. et al. Specific features of the structure of the Z-pinch emitting region formed during the implosion of a foam-wire load at the ANGARA-5-1 facility. Plasma Phys. Rep. 39, 62–85 (2013). https://doi.org/10.1134/S1063780X12120045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X12120045

Keywords

Navigation