Skip to main content
Log in

Implosion dynamics of condensed Z-pinch at the Angara-5-1 facility

  • Plasma Dynamics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The implosion dynamics of a condensed Z-pinch at load currents of up to 3.5 MA and a current rise time of 100 ns was studied experimentally at the Angara-5-1 facility. To increase the energy density, 1- to 3-mm-diameter cylinders made of a deuterated polyethylene−agar-agar mixture or microporous deuterated polyethylene with a mass density of 0.03–0.5 g/cm3 were installed in the central region of the loads. The plasma spatiotemporal characteristics were studied using the diagnostic complex of the Angara-5-1 facility, including electron-optical streak and frame imaging, time-integrated X-ray imaging, soft X-ray (SXR) measurements, and vacuum UV spectroscopy. Most information on the plasma dynamics was obtained using a ten-frame X-ray camera (Е > 100 eV) with an exposure of 4 ns. SXR pulses were recorded using photoemissive vacuum X-ray detectors. The energy characteristics of neutron emission were measured using the time-offlight method with the help of scintillation detectors arranged along and across the pinch axis. The neutron yield was measured by activation detectors. The experimental results indicate that the plasma dynamics depends weakly on the load density. As a rule, two stages of plasma implosion were observed. The formation of hot plasma spots in the initial stage of plasma expansion from the pinch axis was accompanied by short pulses of SXR and neutron emission. The neutron yield reached (0.4–3) × 1010 neutrons/shot and was almost independent of the load density due to specific features of Z-pinch dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Vikhrev and V. V. Ivanov, Sov. Phys. Dokl. 30, 492 (1985).

    ADS  Google Scholar 

  2. V. V. Yan’kov, Sov. J. Plasma Phys. 17, 305 (1991).

    Google Scholar 

  3. Yu. L. Bakshaev, P. I. Blinov, V. V. Vikhrev, E. M. Gordeev, S. A. Dan’ko, V. D. Korolev, S. F. Medovshchikov, S. L. Nedoseev, E. A. Smirnova, V. I. Tumanov, A. S. Chernenko, and A. Yu. Shashkov, Plasma Phys. Rep. 27, 1039 (2001).

    Article  ADS  Google Scholar 

  4. A. A. Akunets, S. S. Anan’ev, J. L. Bakshaev, P. I. Blinov, and V. A. Bryzgynov, The Eur. Phys. J. D 54, 499 (2009).

    Article  ADS  Google Scholar 

  5. A. A. Akunets, S. S. Anan’ev, Yu. L. Bakshaev, P. I. Blinov, V. A. Bryzgunov, V. V. Vikhrev, I. V. Volobuev, S. A. Dan’ko, A. A. Zelenin, E. D. Kazakov, V. D. Korolev, B. R. Meshcherov, S. L. Nedoseev, V. G. Pimenov, E. A. Smirnova, et al., Plasma Phys. Rep. 36, 699 (2010).

    Article  ADS  Google Scholar 

  6. Yu. L. Bakshaev, V. A. Bryzgunov, V. V. Vikhrev, I. V. Volobuev, S. A. Dan’ko, E. D. Kazakov, V. D. Korolev, D. Klir, A. D. Mironenko-Marenkov, V. G. Pimenov, E. A. Smirnova, and G. I. Ustroev, Plasma Phys. Rep. 40, 437 (2014).

    Article  ADS  Google Scholar 

  7. V. V. Vikhrev and A. D. Mironenko-Marenkov, Plasma Phys. Rep. 38, 225 (2012).

    Article  ADS  Google Scholar 

  8. V. V. Aleksandrov, V. A. Bryzgunov, E. V. Grabovski, A. N. Gritsuk, I. V. Volobuev, E. D. Kazakov, Yu.G. Kalinin, V. D. Korolev, Ya. I. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, V. G. Pimenov, E. A. Smirnova, G. I. Ustroev, et al., Plasma Phys. Rep. 42, 355 (2016).

    Article  ADS  Google Scholar 

  9. A. V. Branitsky, V. V. Aleksandrov, E. V. Grabovski, V. V. Zazhivikhin, M. V. Zurin, S. F. Medovshchikov, S. L. Nedoseev, G. M. Oleinik, V. P. Smirnov, I. N. Frolov, and M. V. Fedulov, Plasma Phys. Rep. 25, 976 (1999).

    ADS  Google Scholar 

  10. Yu. L. Merkul’ev, A. A. Akunets, N. G. Borisenko, A. S. Vorontsov, V. V. Gorlevskii, A. I. Gromov, V. M. Dorogotovtsev, A. V. Zabrodin, Yu. E. Markushkin, V. G. Pimenov, R. A. Svitsin, V. G. Starshina, P. A. Storozhenko, and A. M. Khalenkov, Preprint No. 5 (Lebedev Physical Inst., Russ. Acad. Sci., Moscow, 2005).

    Google Scholar 

  11. O. N. Krokhin, V. V. Nikulin, and L. V. Volobuev, Czech. J. Phys. 54 (Suppl.), 359 (2004).

    Article  Google Scholar 

  12. A. P. Shevel’ko, S. N. Andreev, D. E. Bliss, M. G. Mazarakis, J. S. McGurn, K. W. Struve, E. D. Kazakov, L. V. Night, I. Yu. Tolstikhina, and T. J. Weeks, Preprint No. 22 (Lebedev Physical Inst., Russ. Acad. Sci., Moscow, 2007).

    Google Scholar 

  13. V. G. Pimenov, E. E. Sheveleva, and A. M. Sakharov, Instrum. Exp. Tech. 58, 817 (2015).

    Article  Google Scholar 

  14. V. V. Vikhrev and V. D. Korolev, Plasma Phys. Rep. 33, 356 (2007).

    Article  ADS  Google Scholar 

  15. V. V. Aleksandrov, V. A. Barsuk, E. V. Grabovski, A. N. Gritsuk, G. G. Zukakishvili, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, and P. V. Sasorov, Plasma Phys. Rep. 35, 200 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Korolev.

Additional information

Original Russian Text © V.V. Aleksandrov, E.V. Grabovski, A.N. Gritsuk, I.V. Volobuev, E.D. Kazakov, Yu.G. Kalinin, V.D. Korolev, Ya.I. Laukhin, S.F. Medovshchikov, K.N. Mitrofanov, G.M. Oleinik, V.G. Pimenov, E.A. Smirnova, G.I. Ustroev, I.N. Frolov, 2017, published in Fizika Plazmy, 2017, Vol. 43, No. 8, pp. 673–682.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.V., Grabovski, E.V., Gritsuk, A.N. et al. Implosion dynamics of condensed Z-pinch at the Angara-5-1 facility. Plasma Phys. Rep. 43, 824–832 (2017). https://doi.org/10.1134/S1063780X17080025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17080025

Navigation