Skip to main content
Log in

Modern trends in methods of charged particle identification at high energies

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The survey is devoted to methods of charged particle identification at high energies that are based on measurements of the angle of Cherenkov radiation (ring imaging Cherenkov counters — RICH), of time of flight (TOF) and propagation (TOP), and of ionization energy loss (dE/dx). As an example, some operating spectrometers are considered (LHCb, ALICE, COMPASS, Belle, and BaBar) together with proposed ones (Belle-2 and PANDA) in which new achievements of recent years are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Nappi, Advances in Charged Particle Identification Techniques, Nucl. Instrum. Methods Phys. Res., Sect. A 628, 1 (2011).

    Article  ADS  Google Scholar 

  2. P.A. Cherenkov, Phys. Rev. 378, 52 (1937), V. P. Zrelov, Vavilov-Cerenkov Radiation and Its Application in High-Energy Physics (Atomizdat, Moscow, 1968) [in Russian].

  3. Yu. K. Akimov, “Application Areas of Aerogels,” Prib. Tekh. Eksp., No. 3, 5–19 (2003).

  4. Yu. N. Kharzheev, “Use of Silicon Dioxide in Cherenkov Counters,” Fiz. Elem. Chastits At. Yadra 39, 271–324 (2008).

    Google Scholar 

  5. M. Cantin et al., “Silica Aerogels Used as Cherenkov Radiators,” Nucl. Instrum. Methods Phys. Res., Sect. A 118, 177 (1974).

    Article  Google Scholar 

  6. H. Burkhardt, et al., “The TASSO Gaseous and Aerogel Cherenkov Counters,” Nucl. Instrum. Methods Phys. Res. 184, 319 (1981). G. Poelz, “Aerogel Cherenkov Counters at DESY,” Nucl. Instrum. Methods Phys. Res., Sect. A 248, 118–119 (1986).

    Article  ADS  Google Scholar 

  7. T. M. Tillotson and L. W. Hrubesh, UCRL — Ext.-102517 (1990).

  8. I. Adachi et al., “Study of a Threshold Cherenkov Counter Based on Silica Aerogels with Low Refractive Indices,” Nucl. Instrum. Methods Phys. Res., Sect. A 355, 390 (1995). T. Sumiyoshi et al., “Silica Aerogel Cherenkov Counter for the KEK B Factory Experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 433, 385 (1999).

    Article  ADS  Google Scholar 

  9. A. R. Busykaev et al., “Measurement of Optical Parameters of Aerogel,” Nucl. Instrum. Methods Phys. Res., Sect. A 379, 465 (1996). A. F. Danilyuk et al., “Synthesis of Aerogel Tiles with High Light Scattering Lengths,” Nucl. Instrum. Methods Phys. Res., Sect. A 433, 406 (1999). A. F. Danilyuk et al., “Recent Results on Aerogel Development for Use in Cherenkov Counters,” Nucl. Instrum. Methods Phys. Res., Sect. A 494, 491 (2002).

    Article  ADS  Google Scholar 

  10. I. Adachi et al., “Study of Transparent Silica Aerogel with High Refractive Index,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 222 (2011).

    Article  ADS  Google Scholar 

  11. M. Tabata et al., “Development of Transparent Silica Aerogel over a Wide Range of Densities,” Nucl. Instrum. Methods Phys. Res., Sect. A 623, 339–341 (2010).

    Article  ADS  Google Scholar 

  12. M. Yu. Barnyakov et al., “Status of Aerogel Production in Novosibirsk,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 225 (2011).

    Article  ADS  Google Scholar 

  13. M. Yu. Barnyakov et al., “Focusing Aerogel RICH Optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 100 (2008).

    Article  ADS  Google Scholar 

  14. K. Inami, “TOP Counter Prototype R&D,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 298 (2011).

    Article  ADS  Google Scholar 

  15. J. Schwiening, “The Barrel DIRC Detector for the PANDA Experiment at FAIR,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 169 (2011). E. N. Cowie et al., “A Focusing Disc DIRC for PANDA,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 181–184 (2011).

    Article  ADS  Google Scholar 

  16. G. Anzivino et al., “Construction and Test of a RICH Prototype for the NA62 Experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 593, 314 (2008).

    Article  ADS  Google Scholar 

  17. V. Aynutdinov et al., Nucl. Instrum. Methods Phys. Res., Sect. A 628, 115 (2011). A. Achterberg et al., Astropart. Phys 26, 155 (2006). J. Carr, “ANTARES Collaboration,” Nucl. Instrum. Methods Phys. Res., Sect. A 588.

    Article  ADS  Google Scholar 

  18. E. Kistenev, “Particle Identification in the PHENIX Experiment at RHIC (Present and Future),” Nucl. Instrum. Methods Phys. Res., Sect. A 518, 593 (2004).

    Article  ADS  Google Scholar 

  19. C. Joran et al., “Metal-Dielectric Mirror Coating for Cherenkov Detectors,” in: Proc. of RICH. Playa del Carmen, Mexico, 2004.

  20. Yu. A. Budagov et al., “Focusing Mirrors with a Base of Fast-Acting Foam,” Prib. Tekh. Eksp., No. 5, 212–217 (1985).

  21. V. A. Antyukhov et al., “HYPERON Spectrometer: Setup for Studying Processes of Formation and Decay of High Energy Particles at 76 GeV Proton Synchrotron,” Prib. Tekh. Eksp., No. 5, 35–42 (1985).

  22. LHCb Technical Proposal, LHCC 98/04, LHCC/P4, 1998.

  23. S. Esso, Nucl. Instrum. Methods Phys. Res. Sect. A 553, 333 (2005).

  24. D. L. Perego, “The LHCb RICH Silica Aerogel Performance with LHC Data,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 234 (2011).

    Article  ADS  Google Scholar 

  25. C. Matteuzzi, “Technological Implication for RICH Performance,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 202 (2011).

    Article  ADS  Google Scholar 

  26. G. Mallot, “The COMPASS Spectrometer at CERN,” Nucl. Instrum. Methods Phys. Res., Sect. A 518, 121 (2004). P. Abbon, “Particle Identification with COM-PASS RICH-1,” Nucl. Instrum. Methods Phys. Res., Sect. A 631, 26 (2011).

    Article  ADS  Google Scholar 

  27. B. N. Ratcliff, The DIRC Counter: a Particle Identification Device for the B Factory, SLAC-PUB-5946 (1992); The DIRC Counter: a New Type of Particle Identification Device for B Factories, SLAC-PUB-6047 (1993). B. N. Ratcliff, et al., “Imaging Rings in Ring Imaging Cherenkov Counters,” Nucl. Instrum. Methods Phys. Res., Sect. A 502, 211 (2003). I. Adam, “DIRC Particle Identification System for the BABAR Experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 538, 281 (2005).

  28. J. Benitez et al., “Status of the Fast Focusing DIRC (FDIRC),” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 104 (2008).

    Article  ADS  Google Scholar 

  29. K. Inami, “Development of a TOP Counter for the Super B Factory,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 96 (2008). K. Nishimura et al., “An Imaging Time-of-Propagation System for Charged Particle Identification at a Super B Factory,” Nucl. Instrum. Methods Phys. Res., Sect. A 623, 297 (2010).

    Article  ADS  Google Scholar 

  30. P. Schonmeier et al., “DIRC Endcup Detector for PANDA&FAIR,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 108 (2008). E. N. Cowie et al., “A Focusing Disc DIRC for PANDA,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 181–184 (2011).

    Article  ADS  Google Scholar 

  31. C. Schwarz et al., “The Barrel DIRC of the PANDA Experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 112–115 (2008). C. Schwarz et al., “Particle Identification for the PANDA Detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 169 (2011).

    Article  ADS  Google Scholar 

  32. K. Fohl, “The DIRC Detectors of the PANDA Experiment at FAIR,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 88 (2008). G. Schepers, et al., “RICH for PANDA,” Nucl. Instrum. Methods Phys. Res., Sect. A 598, 143 (2009).

    Article  ADS  Google Scholar 

  33. A. Yu. Barnyakov, “R&D of Microchannel Plate Phototubes,” Nucl. Instrum. Methods Phys. Res., Sect. A 567, 17 (2006).

    Article  ADS  Google Scholar 

  34. S. Korpar, “RICH with Multiple Aerogel Layers of Different Refractive Index,” Nucl. Instrum. Methods Phys. Res., Sect. A 553, 64 (2005).

    Article  ADS  Google Scholar 

  35. A. Yu. Barnyakov, et al., “Focusing Aerogel RICH (FARICH),” Nucl. Instrum. Methods Phys. Res., Sect. A 553, 70 (2005).

    Article  ADS  Google Scholar 

  36. S. Korpar, “A Novel Type of Proximity Focusing RICH Counter with Multiple Refractive Index Aerogel Radiator,” Nucl. Instrum. Methods Phys. Res., Sect. A 572, 429 (2007).

    Article  ADS  Google Scholar 

  37. T. Matsumoto, et al., “Studies of Proximity Focusing RICH with an Aerogel Radiator Using Flat-Panel Multi-Anode PMTs (Hamamatsu H8500),” Nucl. Instrum. Methods Phys. Res., Sect. A 521, 367 (2004). P. Krizan, “Proximity Focusing RICH with Flat Panel PMT as Photon Detector and Aerogel as Radiator,” Nucl. Instrum. Methods Phys. Res., Sect. A 553, 58 (2005). I. Adachi et al., “Study of 144-Channel Multi-Anode Hybrid Avalanche Photo-Detector for the Belle RICH Counter,” Nucl. Instrum. Methods Phys. Res., Sect. A 623, 285 (2010).

    Article  ADS  Google Scholar 

  38. S. Shizuka, et al., “Study of 144-Channel Hybrid Avalanche Photo-Detector for Belle II RICH Counter,” Nucl. Instrum. Methods Phys. Res., Sect. A 628, 315 (2011).

    Article  ADS  Google Scholar 

  39. ALICE Technical Design Report of the Time Projection Chamber CERN: LHC 2000-001, 2000, ALICE TDR7; K. Aamondt, et al., “ALICE Collaboration,” J. Instr. 3, 308002 (2008).

  40. P. Martinengo, “The ALICE High Momentum Particle Identification System,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 7 (2011).

    Article  ADS  Google Scholar 

  41. A. Agocs et al., “Very High Momentum Particle Identification in ALICE at the LHC,” Nucl. Instrum. Methods Phys. Res., Sect. A 617, 424 (2010).

    Article  ADS  Google Scholar 

  42. E. Scapparone, “Particle Identification with the ALICE Detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 598, 152 (2009).

    Article  ADS  Google Scholar 

  43. F. Barao, “Cherenkov Detectors in the AMS,” Nucl. Instrum. Methods Phys. Res., Sect. A 454, 174 (2000). AMS Collaboration // Phys. Rep. 366, 331 (2002).

    Article  ADS  Google Scholar 

  44. M. Aguilar-Benitez et al., “In-Beam Aerogel Light Yield Characterization for the AMS RICH Detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 614, 237 (2010).

    Article  ADS  Google Scholar 

  45. L. Arruda et al., Nucl. Phys. B (Proc. Suppl.) 172, 32 (2007).

    Article  ADS  Google Scholar 

  46. M. Buenerd, in: Proceedings of the 30th International Cosmic Ray Conference, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico, 2008, vol. 2 (OG PART1), p. 453.

  47. D. M. Websdale, “Review of Cherenkov Imaging Devices in Particle and Nuclear Physics Experiments,” in: 6th International Workshop on RICH2007, Trieste, Italy, pp.1–8.

  48. S. Eisenhardt, “Production and Tests of Hybrid Photon Detectors for the LHCb RICH Detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 142 (2008).

    Article  ADS  Google Scholar 

  49. A. Yu. Barnyakov, “R&D of Microchannel Plate Phototubes,” Nucl. Instrum. Methods Phys. Res., Sect. A 567, 17 (2006).

    Article  ADS  Google Scholar 

  50. K. Inami, “R&D of Particle Identification Devices with High-Precision Timing,” Nucl. Instrum. Methods Phys. Res., Sect. A 623, 273 (2010); Nucl. Instrum. Methods Phys. Res., Sect. A 569, 303 (2006).

    Article  ADS  Google Scholar 

  51. A. Lehmann, “Performance Studies of Microchannel Plate PMTs in High Magnetic Fields,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 154 (2008).

    Article  Google Scholar 

  52. J. Haba, “Status and Perspectives of Pixelated Photon Detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 154 (2008).

    Article  ADS  Google Scholar 

  53. S. Korpar, “Silicon Photomultiplier Based Photon Detector Module as a Detector of Cherenkov Photons,” Nucl. Instrum. Methods Phys. Res., Sect. A 623, 333 (2010).

    Article  ADS  Google Scholar 

  54. P. Buzhan et al., “Silicon Photomultiplier and Its Possible Applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 504, 48 (2003). D. Renker, “Geiger Mode Avalanche Photodiodes, History, Properties, and Problems,” Nucl. Instrum. Methods Phys. Res., Sect. A 567, 48 (2006).

    Article  ADS  Google Scholar 

  55. K. Kaneyuki, et al., Nucl. Phys. B (Proc. Suppl.) 145, 178 (2005).

    Article  Google Scholar 

  56. B. Dolgoshein, et al., “Status Report on Silicon Photomultiplier Development and Its Applications,” Nucl. Instrum. Methods Phys. Res., Sect. A 563, 368–376 (2006). B. Dolgoshein, “Talk Given at Beaune-2005 Conference,” in: Proceedings of Fourth International Conference “New Development Photodetection,” Beaune, 2005.

    Article  Google Scholar 

  57. K. K. Hamamatsu, Electron Tube Division, Photomultiplier Tubes: Basics and Applications, 2nd Edition (2002).

  58. J. Vavra, “PID Techniques: Alternatives to RICH Methods,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 193–201 (2011).

    Article  ADS  Google Scholar 

  59. K. Inami et al., “A 5 ps TOF-Counter with an MCP-PMT,” Nucl. Instrum. Methods Phys. Res., Sect. A 560, 303 (2006). M. Akatsu et al., “MCP-PMT Timing Property for Single Photons,” Nucl. Instrum. Methods Phys. Res., Sect. A 528, 763 (2004).

    Article  ADS  Google Scholar 

  60. S. Korpar et al., “Proximity Focusing RICH with TOF Capabilities,” Nucl. Instrum. Methods Phys. Res., Sect. A 572, 432433 (2007).

    Google Scholar 

  61. J. Vavra, “A High Resolution TOF Detector—A Possible Way to Compete with RICH Detector,” Nucl. Instrum. Methods Phys. Res., Sect. A 595, 270–273 (2008).

    Article  ADS  Google Scholar 

  62. J. Vavra et al., Nucl. Instrum. Methods Phys. Res., Sect. A 606, 404 (2009).

    Article  ADS  Google Scholar 

  63. A. Ronzhin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 623, 931 (2010).

    Article  ADS  Google Scholar 

  64. S. Korpar, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 593, 169 (2009).

    Google Scholar 

  65. ALICE-TDR of TOF, CERN/LHC 2000-12.

  66. A. Akindinov et al., Nucl. Instrum. Methods Phys. Res., Sect. A 602, 709 (2009).

    Article  ADS  Google Scholar 

  67. Y. Wang, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 613, 200 (2010).

    Article  ADS  Google Scholar 

  68. M. J. Charles and R. Forty, “TORCH: Time of Flight Identification with Cherenkov Radiation,” Nucl. Instrum. Methods Phys. Res., Sect. A 639, 173–176 (2011).

    Article  ADS  Google Scholar 

  69. O. Ullaland, Nucl.Phys. B (Proc. Suppl.) 125, 90 (2003).

    Article  ADS  Google Scholar 

  70. J. H. Thomas, “A TPC for Measuring High Multiplicity Events at RHIC,” Nucl. Instrum. Methods Phys. Res., Sect. A 478, 166–169 (2002).

    Article  ADS  Google Scholar 

  71. ALICE Technical Design Report of the Time Projection Chamber CERN/LHC 2000-001, 2000, ALICE TDR7.

  72. F. Sauli, Nucl. Instrum. Methods Phys. Res., Sect. A 386, 531 (1997).

    Article  ADS  Google Scholar 

  73. Y. Giomataris et al., Nucl. Instrum. Methods Phys. Res., Sect. A 376, 29 (1996).

    Article  ADS  Google Scholar 

  74. J. A. Kamin, “A Hadron Blind Detector for the PHENIX Experiment at RHIC,” Eur. Phys. J. C 49, 177–180 (2007).

    Article  ADS  Google Scholar 

  75. J. Derre et al., Nucl. Instrum. Methods Phys. Res., Sect. A 459, 523 (2001).

    Article  ADS  Google Scholar 

  76. A. Delbart et al., Nucl. Instrum. Methods Phys. Res., Sect. A 461, 84 (2001).

    Article  ADS  Google Scholar 

  77. P. Jeanneret et al., Nucl. Instrum. Methods Phys. Res., Sect. A 500, 133 (2003).

    Article  ADS  Google Scholar 

  78. P. Colas et al., Nucl. Instrum. Methods Phys. Res. Sect. A 535, 506 (2004).

    ADS  Google Scholar 

  79. Y. Giomataris et al., Nucl. Instrum. Methods Phys. Res. Sect. A 560, 405 (2006).

    Article  ADS  Google Scholar 

  80. R. Bellazzini et al., Nucl. Instrum. Methods Phys. Res. Sect. A 535, 477 (2004).

    ADS  Google Scholar 

  81. A. Bamberger Nucl. Instrum. Methods Phys. Res. Sect. A 573, 361 (2007).

  82. F. Cataldi, S. Grancagnolo, and S. Spagnolo, Nucl. Instrum. Methods Phys. Res., Sect. A 386, 458 (1997).

    Article  ADS  Google Scholar 

  83. H. van der Graaf, “Gaseous detectors,” Nucl. Instrum. Methods Phys. Res., Sect. A 628, 27–30 (2011).

    Article  ADS  Google Scholar 

  84. D. Chakraborty and T. Sumiyoshi, Phys. Rev. D 86, 010001 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.N. Kharzheev, 2013, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2013, Vol. 44, No. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharzheev, Y.N. Modern trends in methods of charged particle identification at high energies. Phys. Part. Nuclei 44, 115–157 (2013). https://doi.org/10.1134/S1063779613010048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779613010048

Keywords

Navigation