Skip to main content
Log in

Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is found to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f , f 0, and f + forms of interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592 (2002).

    Article  ADS  Google Scholar 

  2. J. M. Lattimer and M. Prakash, Science 304, 536 (2004).

    Article  ADS  Google Scholar 

  3. A.W. Steiner et al., Phys. Rep. 411, 325 (2005).

    Article  ADS  Google Scholar 

  4. B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).

    Article  ADS  Google Scholar 

  5. R. Chen et al., Phys. Rev. C 85, 024305 (2012); arXiv:1112.2936 [nucl-th].

    Article  ADS  Google Scholar 

  6. V. Baran, M. Colonna, V. Greco, and M. di Toro, Phys. Rep. 410, 335 (2005).

    Article  ADS  Google Scholar 

  7. C. J. Horowitz and J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001).

    Article  ADS  Google Scholar 

  8. M. B. Tsang et al., Phys. Rev. Lett. 102, 122701 (2009).

    Article  ADS  Google Scholar 

  9. R. J. Furnstahl, Nucl. Phys. A 706, 85 (2002).

    Article  ADS  Google Scholar 

  10. K. Oyamatsu et al., Nucl. Phys. A 634, 3 (1998).

    Article  ADS  Google Scholar 

  11. J. Lattimer, C. Pethick, M. Prakash, et al., Phys. Rev. Lett. 66, 2701 (1991).

    Article  ADS  Google Scholar 

  12. C. Lee, Phys. Rep. 275, 255 (1996).

    Article  ADS  Google Scholar 

  13. J. M. Lattimer and M. Prakash, Astrophys. J. 550, 426 (2001).

    Article  ADS  Google Scholar 

  14. C. J. Pethick and D. G. Ravenhall, Ann. Rev. Nucl. Part. Sci. 45, 429 (1995).

    Article  ADS  Google Scholar 

  15. J. M. Lattimer and M. Prakash, Phys. Rep. 333, 121 (2000).

    Article  ADS  Google Scholar 

  16. W. R. Hix et al., Phys. Rev. Lett. 91, 201102 (2003).

    Article  ADS  Google Scholar 

  17. B. A. Li, C. M. Ko, and W. Bauer, Int. J.Mod. Phys. E 7, 147 (1998).

    Article  ADS  Google Scholar 

  18. M. Colona, M. di Toro, G. Fabbri, et al., Phys. Rev. C 57, 1410 (1998).

    Article  ADS  Google Scholar 

  19. B. A. Li, Phys. Rev. Lett. 88, 192701 (2002).

    Article  ADS  Google Scholar 

  20. C. B. Das et al., Phys. Rev. C 67, 034611 (2003).

    Article  ADS  Google Scholar 

  21. J. Rizzo et al., Nucl. Phys. A 732, 202 (2004).

    Article  ADS  Google Scholar 

  22. L.W. Chen, C.M. Ko, and B. A. Li, Phys. Rev. Lett. 94, 032701(2005).

    Article  ADS  Google Scholar 

  23. M. B. Tsang et al., Prog. Part. Nucl. Phys. 66, 400 (2011).

    Article  ADS  Google Scholar 

  24. M. B. Tsang et al., Phys. Rev. Lett. 92, 062701 (2004).

    Article  ADS  Google Scholar 

  25. M. A. Famiano et al., Phys. Rev. Lett. 97, 052701 (2007).

    Article  ADS  Google Scholar 

  26. D. V. Shetty, S. J. Yennelo, and G. A. Souliotis, Phys. Rev. C 76, 024606 (2007).

    Article  ADS  Google Scholar 

  27. A. Klimkiewicz et al., Phys. Rev. C 76, 051603(R) (2007).

    Article  ADS  Google Scholar 

  28. A. Carbone et al., Phys. Rev. C 81, 041301(R) (2010).

    Article  ADS  Google Scholar 

  29. L. Trippa, G. Col, and E. Vigezzi, Phys. Rev. C 77, 061304 (2004).

    Article  ADS  Google Scholar 

  30. L. G. Cao and Z. Y. Ma, Chin. Phys. Lett. 25, 1625 (2008).

    Article  ADS  Google Scholar 

  31. S. Typel and B. A. Brown, Phys. Rev. C 64, 027302 (2001).

    Article  ADS  Google Scholar 

  32. A. E. L. Dieperink et al., Phys. Rev. C 68, 064307 (2003).

    Article  ADS  Google Scholar 

  33. L.W. Chen et al., Phys. Rev. C 72, 064309 (2005).

    Article  ADS  Google Scholar 

  34. M. Centelles et al., Phys. Rev. Lett. 102, 122502 (2009).

    Article  ADS  Google Scholar 

  35. F. Sammarruca et al., Phys. Rev. C 79, 057301 (2009).

    Article  ADS  Google Scholar 

  36. K. Oyamatsu, K. Iida, and H. Koura, Phys. Rev. C 82, 027301 (2010); arXiv:1005.3183 [nucl-th].

    Article  ADS  Google Scholar 

  37. K. Oyamatsu and K. Iida, Phys. Rev. C 75, 015801 (2007).

    Article  ADS  Google Scholar 

  38. S. Kubis, Phys. Rev. C 76, 025801 (2007).

    Article  ADS  Google Scholar 

  39. J. Xu et al., Phys. Rev. C 79, 035802 (2009); Astrophys. J. 697, 1549 (2009).

    Article  ADS  Google Scholar 

  40. Ch. C. Moustakidis et al., Phys. Rev. C 81, 065803 (2010); arXiv:1004.3882 [nucl-th].

    Article  ADS  Google Scholar 

  41. C. Ducoin et al., Eur. Phys. Lett. 91, 32001 (2010); arXiv:1004.5197 [nucl-th].

    Article  ADS  Google Scholar 

  42. W.G. Newton and B. A. Li, Phys. Rev. C 80, 065809 (2009).

    Article  ADS  Google Scholar 

  43. D. V. Shetty and S. J. Yennello, Pramana 75, 259 (2010); arXiv:1002.0313 [nucl-ex].

    Article  ADS  Google Scholar 

  44. C. Xu, B. A. Li, and L. W. Chen, Phys. Rev. C 82, 054607 (2010).

    Article  ADS  Google Scholar 

  45. T. Lesinski et al., Phys. Rev. C 74, 044315 (2006).

    Article  ADS  Google Scholar 

  46. O. Sjoberg, Nucl. Phys. A 265, 511 (1976).

    Article  ADS  Google Scholar 

  47. V. R. Pandharipande and S. C. Pieper, Phys. Rev. C 45, 791 (1992).

    Article  ADS  Google Scholar 

  48. B. A. Li et al., Nucl. Phys. A 735, 563 (2004); Phys. Rev. C 69, 064602 (2004).

    Article  ADS  Google Scholar 

  49. M. Jaminon and C. Mahaux, Phys. Rev. C 40, 354 (1989).

    Article  ADS  Google Scholar 

  50. K. F. Liu and N. V. Giai, Phys. Lett. B 65, 23 (1976).

    Article  ADS  Google Scholar 

  51. J. Dabrowski, Acta Phys. Polon. B 30, 1647 (1999).

    ADS  Google Scholar 

  52. S. Kubis and M. Kutschera, Phys. Lett. B 399, 191(1997).

    Article  ADS  Google Scholar 

  53. V. Greco et al., Phys. Rev. C 63, 035202 (2001).

    Article  ADS  Google Scholar 

  54. V. Greco et al., Phys. Rev. C 63, 045203 (2001).

    Article  ADS  Google Scholar 

  55. V. Greco et al., Phys. Lett. B 562, 215 (2003).

    Article  ADS  Google Scholar 

  56. E. Chabanat et al., Nucl. Phys. A 627, 710 (1997).

    Article  ADS  Google Scholar 

  57. E. Chabanat et al., Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  58. E. Chabanat et al., Nucl. Phys. A 634, 441 (1998).

    Google Scholar 

  59. J. Decharge and D. Gogny, Phys. Rev. C 21, 1568 (1998).

    Article  ADS  Google Scholar 

  60. J. F. Berger, M. Girod, and D. Gogny, Nucl. Phys. A 428, 23c (1984).

    Article  ADS  Google Scholar 

  61. J. P. Blaizot et al., Nucl. Phys. A 591, 435 (1995).

    Article  ADS  Google Scholar 

  62. F. Chappert, M. Girod, and S. Hilaire, Phys. Lett. B 668, 420 (2008).

    Article  ADS  Google Scholar 

  63. S. Goriely, S. Hilaire, and M. Girod, Phys. Rev. Lett. 102, 242501 (2009).

    Article  ADS  Google Scholar 

  64. B. Behera, T. R. Routray, and R.K. Satpathy, J. Phys. G 24, 2073 (1998).

    Article  ADS  Google Scholar 

  65. S. Chakraborty, B. Sahoo, and S. Sahoo, Nucl. Phys. A 912, 31 (2013).

    Article  ADS  Google Scholar 

  66. S. Chakraborty, B. Sahoo, and S. Sahoo, Int. J.Mod. Phys. E 21, 1250079 (2012).

    Article  ADS  Google Scholar 

  67. B. Behera et al., Nucl. Phys. A 794, 132 (2007).

    Article  ADS  Google Scholar 

  68. R. B. Wiringa, Phys. Rev. C 38, 2967 (1988); R. B. Wiringa, V. Fiks, and A. Fabrocini, Phys. Rev. C 38, 1010 (1988).

    Article  ADS  Google Scholar 

  69. C. Xu, B. A. Li, L. W. Chen, and C. M. Ko, Nucl. Phys. A 865, 1 (2011).

    Article  ADS  Google Scholar 

  70. A.M. Lane, Nucl. Phys. 35, 676 (1962).

    Article  Google Scholar 

  71. L.W. Chen et al., Phys. Rev. C 80, 014322 (2009).

    Article  ADS  Google Scholar 

  72. J. M. Pearson and S. Goriely, Phys. Rev. C 64, 027301 (2001).

    Article  ADS  Google Scholar 

  73. K. A. Brueckner and J. Dabrowski, Phys. Rev. 134, B722 (1964).

    Article  ADS  Google Scholar 

  74. N. M. Hugenholtz and L. van Hove, Physica 24, 363 (1958).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  75. J. Dabrowski and P. Haensel, Phys. Lett. B 42, 163 (1972); Phys. Rev. C 7, 916 (1973); Can. J. Phys. 52, 1768 (1974).

    Article  ADS  Google Scholar 

  76. M. Dutra et al., Phys. Rev. C 85, 035201 (2012); arXiv:1202.3902 [nucl-th].

    Article  ADS  Google Scholar 

  77. K. Moghrabi et al., Phys. Rev. C 85, 044323 (2012); arXiv:1204.1460 [nucl-th].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sahoo.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Sahoo, B. & Sahoo, S. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope. Phys. Atom. Nuclei 78, 43–52 (2015). https://doi.org/10.1134/S1063778815010032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815010032

Keywords

Navigation