Skip to main content
Log in

Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation

  • Atmospheric and Aeroacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. C. Crow and F. H. Champagne, J. Fluid Mech. 48 3, 547 (1971).

    Article  ADS  Google Scholar 

  2. N. W. M. Ko and P. O. A. L. Davies, J. Fluid Mech. 50 1, 49 (1971).

    Article  ADS  Google Scholar 

  3. G. L. Brown and A. Roshko, J. Fluid Mech. 64 4, 775 (1974).

    Article  ADS  Google Scholar 

  4. C. J. Moore, J. Fluid Mech. 80 2, 321 (1977).

    Article  ADS  Google Scholar 

  5. B. Thurow, M. Samimy, and W. Lempert, Phys. Fluids 15 6, 1755 (2003).

    Article  ADS  Google Scholar 

  6. A. E. Ginevsky, Ye. V. Vlasov, and R. K. Karavosov, Acoustic Control of Turbulence Jets (Springer-Verlag, Heidelberg, 2004).

    Book  Google Scholar 

  7. A. Michalke, J. Fluid Mech. 19 4, 543 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Michalke, J. Fluid Mech. 23 3, 521 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. H. Sidelnikov, Self-Oscillating Noise Generation under Issuing of Gas Jets (Nauka, Moscow, 1971).

    Google Scholar 

  10. J. T. C. Liu, J. Fluid Mech. 62 3, 437 (1974).

    Article  ADS  Google Scholar 

  11. C. K. W. Tam, J. Fluid Mech. 46 4, 757 (1971).

    Article  ADS  Google Scholar 

  12. C. K. W. Tam, K. Viswanathan, K. K. Ahuja, and J. Panda, J. Fluid Mech. 615, 253 (2008).

    Article  ADS  Google Scholar 

  13. A. S. Ginevskii, E. V. Vlasov, and A. V. Kolesnikov, Aeroacoustical Interactions (Mashinostroenie, Moscow, 1978) [in Russian].

    Google Scholar 

  14. M. Yu. Zaitsev, V. F. Kop’ev, and S. A. Chernyshev, Fluid Dynamics 44 4, 587 (2009).

    Article  ADS  Google Scholar 

  15. P. Jordan and Y. Jervais, Exp. Fluids 44 1, 1 (2008).

    Article  Google Scholar 

  16. V. I. Furletov, Fluid Dynamics 4 5, 111 (1969).

    Article  ADS  Google Scholar 

  17. V. F. Kop’ev, I. V. Belyaev, M. Yu. Zaitsev, V. A. Kop’ev, and V. A. Faranosov, Acoust. Phys. 59 1, 16 (2013).

    Article  ADS  Google Scholar 

  18. C. E. Cala, E. C. Fernandes, M. V. Heitor, and S. I. Shtork, Exp. Fluids 40 2, 267 (2006).

    Article  Google Scholar 

  19. D. L. Zakharov, S. Yu. Krasheninnikov, V. P. Maslov, A. K. Mironov, and P. D. Toktaliev, Fluid Dynamics 49 1, 51 (2014).

    Article  MathSciNet  Google Scholar 

  20. S. Yu. Krasheninnikov, J. Fluid Dynamics 6 6, 1039 (1971).

    Article  ADS  Google Scholar 

  21. M. Vanierschot and E. Bulck, Exp. Fluids 50 1, 189 (2011).

    Article  Google Scholar 

  22. S. Yu. Krasheninnikov and A. K. Mironov, Fluid Dynamics 45 3, 402 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. A. B. Wills, J. Fluid Mech. 20 3, 417 (1964).

    Article  ADS  Google Scholar 

  24. R. K. Karavosov, Trudy TsAGI, No. 1371, 27 (1971).

    Google Scholar 

  25. M. J. Fisher, M. Harper-Bourne, and S. A. L. Glegg, J. Sound Vibr. 51 1, 23 (1977).

    Article  ADS  Google Scholar 

  26. G. R. Mac-Gregor and C. D. Simcox, The Location of Acoustic Sources in Jet Flows by Means of the “Wall Isolation” Technique AIAA Paper No. 1041, (1973).

    Google Scholar 

  27. High Velocity Jet Noise Source Location and Reduction (U. S. Department of Transportation. 1977. FAA, Report ¹ FAA-RD-76-79).

  28. K. B. M. Q. Zaman, J. Sound Vibr. 106 1, 1 (1986).

    Article  ADS  Google Scholar 

  29. M. B. Alkislar, Aeroacoustics of a Mach 0. 9 Jet with Chevron-microjet Combination AIAA Paper No. 3041, (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mironov.

Additional information

Original Russian Text © A.K. Mironov, S.Yu. Krasheninnikov, V.P. Maslov, D.E. Zakharov, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 4, pp. 480–488.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, A.K., Krasheninnikov, S.Y., Maslov, V.P. et al. Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation. Acoust. Phys. 62, 483–490 (2016). https://doi.org/10.1134/S1063771016040126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771016040126

Keywords

Navigation