Skip to main content
Log in

Control of the formation of ultrathin CoSi2 layers during the rapid thermal annealing of Ti/Co/Ti/Si(100) structures

  • Technological Processes in Micro- and Nanoelectronics
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The initial Ti(8 nm)/Co(10 nm)/Ti(5 nm) structures formed on the Si(100) substrate by magnetron sputtering were subjected to two-stage rapid thermal annealing (RTA) in the nitrogen ambient. The samples of the structures were controlled using the time-of-flight SIMS, the Auger spectroscopy, scanning electron microscopy, X-ray dispersion microprobe analysis, and measurements of the layer resistance at each stage of annealing. At the RTA-1 stage (550°C, 45 s), a sacrificial layer formed on the surface. This layer consisted of the titanium (oxy)nitride coating, into which the residual impurities (O, C, and N) were forced out, and the transient Co-Si-Ti(TiO,TiN) layer with a high cobalt content and a low (trace) titanium content. After the selective removal of this sacrificial layer, the surface composition corresponded to monosilicide CoSi, which transformed into the highly conductive CoSi2 phase at the RTA-2 stage (830°C, 25 s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bei, Li. and Jianlin, Liu, CoSi2-Coated Si Nanocrystal Memory, J. Appl. Phys., 2009, vol. 105, p. 084905.

    Article  Google Scholar 

  2. Murarka, S.P., Silicides for VLSI Applications, New York: Academic, 1983.

    Google Scholar 

  3. Donaton, R.A., Maex, K., Vantomme, A., Co Silicide Formation on SiGeC/Si and SiGe/Si Layers, Appl. Phys. Lett., 1997, vol. 70, p. 1266.

    Article  Google Scholar 

  4. Belousov, I.V., Kuznetsov, G.V., and Pchelyakov, O.P., Planar Lateral Crystallization of the Cobalt-Silicide Phase on Silicon Surface, Fiz. Tekhn. Poluprovodn., 2006, vol. 40,issue 3, p. 909.

    Google Scholar 

  5. Detavernier, C., Lavoie, C., and Van Meirhaeghe, R., CoSi2 Formation in the Presence of Ti, Ta or W, Thin Solid Films, 2004, vol. 468, nos. 1–2, p. 174.

    Article  Google Scholar 

  6. Rudakov, V.I. and Gusev, V.N., Formation of the TiN/CoSi2 Constact System by Rapid Thermal Annealing of a Co/Ti/Si Structure, Russ. Microelectron., 2008, vol. 37, no. 4, pp. 215–225.

    Article  Google Scholar 

  7. US Patent no. 6410429, Int. Cl. H 01L 21/44, 2001.

  8. Vulpio, M., Fazio, D., Bileci, M., and Gerardi, C., Electrical and Physical Characterization of Cobalt Silicide Growth and Alternative Cap Layers, Proc. 204th Electrochem. Soc. Meeting, 2003, abs. 594.

  9. Wacquant, F., Regnier, C., Basso, M.-T., Design of Experiment on the Co Salicide Process: Impact of Thickness and Anneals on Main CMOS Parameters, in Advanced Short-Time Thermal Processing for Si-Based CMOS Devices, Roozeboom, F., Gusev, E.P., Chen, L.J., Ozturk, M.C., Kwong, D.-L., and Timans, P.J., Eds., Electrochem. Soc., 2003, vol. 14, pp. 191–196.

  10. Gao, Y., A New Secondary Ion Mass Spectrometry Technique for III–V Semiconductor Compounds Using the Molecular Ions CsM+, J. Appl. Phys., 1988, vol. 64, p. 3760.

    Article  Google Scholar 

  11. Magee, C.W., Harrington, W.L., and Botnick, E.M., On the Use of CsX+ Cluster Ions for Major Element Depth Profiling in Secondary Ion Mass Spectrometry, Int. J. Mass Spec., 1990, no. 103, p. 45.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Rudakov.

Additional information

Original Russian Text © V.I. Rudakov, Yu.I. Denisenko, V.V. Naumov, S.G. Simakin, 2011, published in Mikroelektronika, 2011, Vol. 40, No. 6, pp. 424–429.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudakov, V.I., Denisenko, Y.I., Naumov, V.V. et al. Control of the formation of ultrathin CoSi2 layers during the rapid thermal annealing of Ti/Co/Ti/Si(100) structures. Russ Microelectron 40, 389–394 (2011). https://doi.org/10.1134/S1063739711060102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739711060102

Keywords

Navigation