Skip to main content
Log in

Modeling evolution of damage in rock specimens under loading

  • Rock Failure
  • Published:
Journal of Mining Science Aims and scope

Abstract

Based on the integrated analysis of micro-strains obtained using white light specklephotography method in Brazilian Test of rock specimens and analytically calculated elastic fields of stresses and strains, the authors show that there exist significant correlation dependences between the damage in a certain domain of a rock specimen and the level of the external load. Given a verified geomechanical model describing properly evolution of stresses in a rock specimen, this fact offers pre-requisites for estimation of damage in different areas of a rock specimen by monitoring condition only in one of such areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McGarr, A., Simpson, D., and Seeber, L., Case Histories of Induced and Triggered Seismicity, International Handbook of Earthquake and Engineering Seismology, 2002, vol. 81A.

  2. Li, T.B. and Xiao, X.P., Comprehensive Integrated Methods of Rockburst Prediction in Underground Engineering, Advance in Earth Science, 2008, vol. 23(5).

    Google Scholar 

  3. Zhenbi, L., Baiting, Zh., Microseism Monitoring System for Coal and Gas Outburst, Int. J. Computer Sci. Issues, 2012, vol. 9, issue 5, no. 1.

    Google Scholar 

  4. Urbancic, T.I. and Trifu, C.I., Recent Advances in Seismic Monitoring Technology at Canadian Mines, J. Appl. Geophysics, 2000, vol. 45.

  5. Zakharov, V.N., Seismoakusticheskoe prognozirovanie i kontrol’ sostoyaniya i svoistv gornykh porod pri razrabotke ugol’nykh mestorozhdenii (Seismo-Acoustic Prediction and Monitoring of State and Properties of Rocks in Coal Mining), Moscow: IGD A.A. Skochinskogo, 2002.

    Google Scholar 

  6. Kuksenko, V.S., Diagnosis and Forecasting of Failure of Large-Scale Objects, Fiz. Tverd. Tela, 2005, vol. 47, no. 5.

    Google Scholar 

  7. Gor, A.Yu., Kuksenko, V.S., Tomilin, N.G., and Frolov, D.I., Concentration Threshold for Failure and Prediction of Rock Bursts, J. Min. Sci., 1989, vol. 25, no. 3, pp 237–242.

    Google Scholar 

  8. Oparin, V.N., Sashurin, A.D., Leont’ev, A.V., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Destruction and Self-Organization in the Earth Crust Areas under High Industrial Impact), Novosibirsk: SO RAN, 2012.

    Google Scholar 

  9. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003, Part I: Seismic Regime, J. Min. Sci., 2004, vol. 40, no. 4, pp. 321–338.

    Article  Google Scholar 

  10. Mogi, K., Experimental Rock Mechanics, London: Taylor and Francis, 2007.

    Google Scholar 

  11. Shkuratnik, V.L. and Nikolenko, P.V., Using Acoustic-Emission Memory of Composites in Critical Stress Control in Rock Masses, J. Min. Sci., 2013, vol. 49, no. 4, pp. 544–549.

    Article  Google Scholar 

  12. Shkuratnik, V.L., Filimonov, Yu.L., and Kuchurin, S.V., Acoustic-Emissive Memory Effect in Coal Samples under Triaxial Axial-Symmetric Compression, J. Min. Sci., 2006, vol. 42, no. 3, pp. 203–209.

    Article  Google Scholar 

  13. Dyad’kov, P.G., Mel’nikova, V.I., Nazarov, L.A., Nazarova, L.A., and San’kov, V.A., Increase of Seismotectonic Activity in the Baikal Region in 1989-95: Results of Experimental Observations and Numerical Modeling of Changes in the Stress-Strain State. Geology and Geophysics, 1999, vol. 40, no. 3.

    Google Scholar 

  14. Vallejous, J.A. and MacKinnon, S.D., Correlation between Mining and Seismicity for Re-Entry Protocol Development, Int. J. Rock Mech. Min. Sci., 2010, vol. 48.

  15. Lin’kov, A.M., Numerical Modeling of Seismic and Aseismic Events in Geomechanics, J. Min. Sci., 2005, vol. 41, no. 1, pp. 14–26.

    Article  Google Scholar 

  16. Al Heib, M., Numerical and Geophysical Tools Applied for the Prediction of Mine Induced Seismicity in French Coalmines, Int. J. of Geosciences, 2012, vol. 3, no. 4A.

    Google Scholar 

  17. Besedina, A.N., Kabychenko, N.V., and Kocharyan, G.G., Low-Magnitude Seismicity Monitoring in Rocks, J. Min. Sci., 2013, vol. 49, no. 5, pp. 691–703.

    Article  Google Scholar 

  18. Cai, M., Kaiser, P.K., Morioka, H., et al., FLAC/PFC Couple Numerical Simulation of AE in Large-Scale Underground Excavations, Int. J. Rock Mech. Min. Sci., 2007, vol. 44, no. 6, pp. 550–564.

    Article  Google Scholar 

  19. Nazarov, L.A., Nazarova, L.A., Yaroslavtsev, A.F., et al., Evol. tion of Stress Fields and Induced Seismicity in Operating Mines, J. Min. Sci., 2011, vol. 47, no. 6, pp. 707–713.

    Article  Google Scholar 

  20. Razumovsky, I.A., Interferentsionno-opticheskie metody mekhaniki deformiruemogo tela, (Interferenceand-Optical Methods in Deformable Solid Body Mechanics), Moscow: MGTU. N.E. Baumana, 2007.

    Google Scholar 

  21. Larsson, L., Sjodahl, M., and Thuvander, F., 3-D Microscopic Displacement Field Measurements Using Digital Speckle Photography, Optics and Lasers in Engineering, 2004, vol. 4, no. 5.

    Google Scholar 

  22. Choi, S. and Shah, S.P., Measurement of Deformations on Concrete Subjected to Compression Using Image Correlation, Experimental Mechanics, 1997, vol. 37, no. 3.

    Google Scholar 

  23. Jacobson, L. and Enqvist, B., Deformation Measurement on Rock Specimen during Brazilian Test Using White Light Speckle Photography, Building Technology and Mechanics Boras, SP Technical Notes, 2004, vol. 38.

  24. Nguyena, T. L., Halla S. A., Vacherb, P., Viggianib, G., Fracture Mechanisms in Soft Rock: Identification and Quantification of Evol. ing Displacement Discontinuities by Extended Digital Image Correlation, Tectonophysics, 2011, vol. 503, nos. 1–2.

    Google Scholar 

  25. GOST 21153.3–85. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom rastyazhenii (Rocks. Processes for Determination of Ultimate Strength under Uniaxial Tension), Moscow: Gos. Komitet SSSR Stand., 1985.

    Google Scholar 

  26. GOST 10180–90 Betony. Metody opredeleniya prochnosti po kontrol’nym obraztsam: Mezhgosudarstvennyi standart (Concretes. Processes for Determination of Strength on Reference Specimens: Interstate Standard), Moscow: Standartinform, 2006.

    Google Scholar 

  27. GOST 21153.2-84. Porody gornye. Metody opredeleniya predela prochnosti pri odnoosnom rastyazhenii (Rocks. Processes for Determination of Ultimate Strength under Uniaxial Tension), Moscow: Gos. Komitet SSSR Stand., 1984.

    Google Scholar 

  28. Jaeger, J.C. and Cook, N.G.W., Theory and Application of Curved Jacks for Measurement of Stresses, State of Stress in the Earth's Crust, W.R. Judd (Ed.) New York: Elsevier, 1964.

  29. Hondros, G., The Evaluation of Poisson’s Ratio and the Modulus of Materials of a Low Tensile Resistance by the Brazilian (Indirect Tensile) Test with Particular Reference to Concrete, Austr. J. Appl. Sci., 1959, vol. 10.

  30. Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Fundamental Problems of Mathematical Elasticity Theory), Moscow: Nauka, 1966.

    Google Scholar 

  31. Gomez, J.T., Shukla, A., and Sharma, A., Static and Dynamic Behavior of Concrete and Granite in Tension with Damage, Theor. Appl. Fracture Mechanics, 2001, vol. 36.

  32. Lavrov, A.V., Shkuratnik, V.L., and Filimonov, Yu.L., Akustoemissionnyi effekt pamyati v gornykh porodakh (Acoustic-Emission Effect of Memory in Rocks), Moscow: Mosk. Gos. Tekh. Univer., 2004.

    Google Scholar 

  33. Suknev, S.V. and Novopashin, M.D., Gradient Approach to Rock Strength Estimation, J. Min. Sci., 1999, vol. 35, no. 4, pp. 381–386.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Nazarov.

Additional information

Original Russian Text © L.A. Nazarov, L.A. Nazarova, P.A. Tsoi, L.V. Tsibizov, 2015, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2015, No. 6, pp. 35–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, L.A., Nazarova, L.A., Tsoi, P.A. et al. Modeling evolution of damage in rock specimens under loading. J Min Sci 51, 1101–1107 (2015). https://doi.org/10.1134/S1062739115060356

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739115060356

Keywords

Navigation