Skip to main content
Log in

Normal and second derivative spectrophotometric determination of niobium using solid phase extraction technique

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

This paper describes a rapid method for niobium preconcentration, separation and determination by using solid phase extraction (SPE). The activity level of 94Nb is still very low in the environment. However, on account of its long half life, 94Nb would be one of the important isotopes in the near future for the safe management of radioactive waste. SPE method using freshly precipitated microcrystalline naphthalene as an adsorbent has been developed to separate and preconcentrate trace amount of niobium from aqueous samples for the detection by normal and second derivative spectrophotometry. The influence of some analytical parameters on the quantitative recoveries of the Nb(V) was investigated by batch technique. The complex extracted on naphthalene has an absorption maximum at 380 nm. The optimum pH range for the sorption is 7–8. The molar absorptivity is 1.40 × 104 L/(mol cm), the sensitivity being 0.0066 µg/cm2 of niobium. Derivative spectrophotometry in conjunction with extractive pre-concentration of Nb(V) with SPE is used for determining Nb(V) at concentration levels down to 25 ppb in initial sample. The foreign ions interference has been studied and the optimized conditions developed were utilized successfully for the trace determination of niobium in alloy steel, environmental and wastewater samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marczenko, Z. and Balcerzak, M., Separation, Preconcentration, and Spectrophotometry in Inorganic Analysis, Amsterdam: Elsevier, 2001.

    Google Scholar 

  2. Patel, K.S. and Das, M., Anal. Lett., 1991, vol. 24, p. 1273.

    Article  CAS  Google Scholar 

  3. Kim, K., Kim, H., Rho, G., and Sohn, D., J. Nucl. Sci. Technol., 2011, p. 24.

    Google Scholar 

  4. Remenec, B., Dulansk, S., Gardonova, V., and Matel, L., J. Radioanal. Nucl. Chem., 2013, vol. 295, p. 907.

    Article  CAS  Google Scholar 

  5. Yoshida, M., Numata, Y., Seki, R., and Ikeda, N., Radioisotopes, 1990, vol. 39 p, p. 547.

    Article  CAS  Google Scholar 

  6. Lobinski, R. and Marczenko, Z., Spectrochemical Trace Analysis for Metals and Metalloids, Amsterdam: Elsevier, 1998.

    Google Scholar 

  7. Welz, B., Atomic Absorption Spectrometry, Weinheim: VCH, 1985.

    Google Scholar 

  8. de Figueiredo, E.C., Luccas, P.O., and Arruda, M.Z., Anal. Lett., 2006, vol. 39, p. 543.

    Article  Google Scholar 

  9. Hamed, M.M., Ph. D. Thesis, Cairo, Egypt: Al-Azhar Univ., 2009.

    Google Scholar 

  10. Sanchez, M., Francisco, A., Jimenez, F., and Montelongo, F., Talanta, 1989, vol. 36, p. 831.

    Article  CAS  Google Scholar 

  11. Talsky, G., Derivative Spectrophotometry of First and Higher Orders, New York: VCH, 1994.

    Book  Google Scholar 

  12. El-Sayed, A.A. and Hamed, M.M., J. Radioanal. Nucl. Chem., 2006, vol. 270, p. 629.

    Article  CAS  Google Scholar 

  13. El-Sayed, A.A., Hamed, M.M., Hammad, H.A., and El-Reefy, S.A., Radiochim. Acta, 2007, vol. 95, p. 43.

    Article  CAS  Google Scholar 

  14. El-Sayed, A.A., Hamed, M.M., Awwad, N.S., and El-Reefy, S.A., Anal. Lett., 2008, vol. 41, p. 871.

    Article  CAS  Google Scholar 

  15. El-Sayed, A.A. and Hamed, M.M., and Eurasian J. Anal. Chem., 2009, vol. 4, p. 36.

    CAS  Google Scholar 

  16. El-Sayed, A.A., Hamed, M.M., and El-Reefy, S.A., J. Anal. Chem., 2010, vol. 65, p. 1113.

    Article  CAS  Google Scholar 

  17. El-Sayed, A.A., Hamed, M.M., and El-Reefy, S.A., Arab. J. Nucl. Sci. Appl., 2005, vol. 38 p, p. 54.

    Google Scholar 

  18. Sadeghi, S. and Sheikhzade, E., J. Hazard. Mater., 2009, vol. 163, p. 861.

    Article  CAS  Google Scholar 

  19. Hamed, M.M., Yakout, S.M., and Hassan, H.S., J. Radioanal. Nucl. Chem., 2013, vol. 295, p. 697.

    Article  CAS  Google Scholar 

  20. Behpour, M., Soltani, N., and Ghoreishi, S.M., Eur. J. Chem., 2010, vol. 4, p. 216.

    Article  Google Scholar 

  21. Puri, B.K., Jackson, K.W., and Katyal, M., Microchem. J., 1987, vol. 36, p. 135.

    Article  CAS  Google Scholar 

  22. Saeed, M.M., Hasany, S.M., and Ahmed, M., Talanta, 1999, vol. 50, p. 625.

    Article  Google Scholar 

  23. Hamed, M.M., Attallah, M.F., and Metwally, S.S., Radiochim. Acta, 2014, vol. 102, p. 1017.

    CAS  Google Scholar 

  24. Sanchez, M., Francisco, A., and Jimenez, F., Talanta, 1989, vol. 36, p. 831.

    Article  CAS  Google Scholar 

  25. Alonso, J., Garcia, M., and Sanz-Medel, A., Talanta, 1984, vol. 31, p. 361.

    Article  CAS  Google Scholar 

  26. Sanz-Medel, A., Camara Rica, C., and Perez-Bustamante, J.A., Anal. Chem., 1980, vol. 52, p. 1035.

    Article  CAS  Google Scholar 

  27. Nagiev, K.D., J. Anal. Chem., 2004, vol. 59, no. 10, p. 930.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa M. Hamed.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, M.M., Aglan, R.F. & El-Reefy, S.A. Normal and second derivative spectrophotometric determination of niobium using solid phase extraction technique. J Anal Chem 70, 1103–1110 (2015). https://doi.org/10.1134/S1061934815090075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934815090075

Keywords

Navigation