Skip to main content
Log in

Gold Determination by Electrothermal Atomic Absorption Spectrometry After Preconcentration Using Natural Deep Eutectic Solvent Based on Menthol and Camphor

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

A novel analytical procedure for the determination of gold by electrothermal atomic absorption spectrometry combined with selective liquid–liquid extraction by natural deep eutectic solvents (NADESs) is presented. The extraction ability of the NADESs prepared using menthol, thymol and camphor toward gold in hydrochloric acid solutions was studied. The extraction efficiency was improved by optimizing the parameters including the composition of the NADESs, the volume ratio of organic and aqueous phases, kinetics, and acidity of the solution. Quantitative determination of gold was carried out by electrothermal atomic absorption spectrometry directly in the NADESs phase dissolved in isopropyl alcohol. The extraction recovery of gold from 1 mol/L HCl with the NADESs based on menthol and camphor mixed in a molar ratio 1:1 was 99.7% at an enrichment factor of 100. The limits of detection and quantification of the proposed procedure were 1 μg/L and 3.3 μg/L, respectively, with a relative standard deviation of less than 5%. The developed procedure was applied for determination of gold in the certified reference material of ore, environmental and waste waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data supporting the finding reported herein are available on reasonable request from the corresponding author.

References

  1. Yakubchuk A. Russian gold mining: 1991 to 2021 and beyond. Ore Geol Rev. 2023;153:105287.

    Article  Google Scholar 

  2. Grebneva-Balyuk ON, Kubrakova IV. Determination of platinum group elements in geological samples by inductively coupled plasma mass spectrometry: possibilities and limitations. J Anal Chem. 2020;75(3):275–85.

    Article  CAS  Google Scholar 

  3. Liu YH, Wan B, Xue DS. Sample digestion and combined preconcentration methods for the determination of ultra-low gold levels in rocks. Molecules. 2019;24(9):24091778.

    Article  Google Scholar 

  4. Dubenskiy AS, Bolshov MA, Seregina IF. Sorption–mass spectrometry determination of platinum metals in basic rocks and ores. J Anal Chem. 2019;74(1):33–40.

    Article  CAS  Google Scholar 

  5. Tian L, Song X, Liu T, Li A, Ning Y, Hua X, Liang D. A review of spectroscopic probes constructed from aptamer–binding gold/silver nanoparticles or their dimers in environmental pollutants` detection. Anal Sci. 2022;38:1247–59.

    Article  CAS  PubMed  Google Scholar 

  6. Hagarová I, Nemček L, Šebesta M, Zvěřina O, Kasak P, Urík M. Preconcentration and separation of gold nanoparticles from environmental waters using extraction techniques followed by spectrometric quantification. Int J Mol Sci. 2022;23(19):11465.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ermolin MS, Ivaneev AI, Brzhezinskiy AS, Karandashev VK, Mokhov AV, Fedotov PS. Anthropogenic source of gold in Moscow urban dust. J Anal Chem. 2022;77(10):1340–8.

    Article  CAS  Google Scholar 

  8. Kubrakova IV, Nikulin AV, Koshcheeva IYa, Tyutyunnik OA. Platinum metals in the environment: content, determination, behaviour in natural systems. Chem Sustain Dev. 2012;20:593–603.

    Google Scholar 

  9. Volzhenin AV, Petrova NI, Medvedev NS, Irisov DS, Saprykin AI. Determination of gold and palladium in rocks and ores by atomic absorption spectrometry using two-stage probe atomization. J Anal Chem. 2017;72(2):156–62.

    Article  CAS  Google Scholar 

  10. Filatova DG, Eskina VV, Baranovskaya VB, Vladimirova SA, Gaskov AM, Rumyantseva MN, Karpov YA. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B At Spectrosc. 2018;140:1–4.

    Article  CAS  Google Scholar 

  11. Petrov AM, Klimova OI, Dalnova OA, Karpov YA. Determination of gold and platinum metals in second-hand and technogenic materials with the use of the sorption atomic emission method with a multichannel emission spectra analyzer. Inorg Mater. 2014;50(14):1387–91.

    Article  CAS  Google Scholar 

  12. Tao D, Guo W, Xie W, Jin L, Guo Q, Hu S. Rapid and accurate determination of gold in geological materials by an improved ICP-MS method. Microchem J. 2017;135:221–5.

    Article  CAS  Google Scholar 

  13. Chao JB, Wang JR, Zhang JQ. Accurate determination and characterization of gold nanoparticles based on single particle—inductively coupled plasma-mass spectrometry. Chin J Anal Chem. 2020;48(7):946–54.

    Article  CAS  Google Scholar 

  14. Ghosh M, Swain KK, Chavan TA, Wagh DN, Verma R. Determination of gold and silver in dross using EDXRF technique. Xray Spectrom. 2015;44(1):13–5.

    Article  CAS  Google Scholar 

  15. Maksimova YA, Dubenskiy AS, Garmash AV, Pashkova GV, Shigapova IV, Seregina IF, Pavlova LA, Sharanov PYu, Bolshov MA. Simultaneous determination of Os, Ir, Pt and Au in sorbent phases by total reflection X-ray fluorescence. Spectrochim Acta Part B At Spectrosc. 2022;196:106521.

    Article  CAS  Google Scholar 

  16. Mokhodoeva OB, Nikulin AV, Myasoedova GV, Kubrakova IV. A new combined ETAAS method for the determination of platinum, palladium, and gold traces in natural samples. J Anal Chem. 2012;67(6):531–6.

    Article  CAS  Google Scholar 

  17. Bahadir Z. A surfactant-based emulsification microextraction (SBEME) method for the atomic absorption determination of gold. Desalin Water Treat. 2019;169:305–11.

    Article  CAS  Google Scholar 

  18. Wang N, Sun X-D, Huo D. Determination of gold in mineral samples by flame atomic absorption spectrometry after the separation and preconcentration with small fire assay. Spectrosc Spectr Anal. 2019;39(8):2614–7.

    CAS  Google Scholar 

  19. Kannouma RE, Hammad MA, Kamal AH, Mansour FR. Miniaturization of liquid-liquid extraction; the barriers and the enablers. Microchem J. 2022;182: 107863.

    Article  CAS  Google Scholar 

  20. El-Shahawi MS, Bashammakh AS, Bahaffi SO. Chemical speciation and recovery of gold(I, III) from wastewater and silver by liquid–liquid extraction with the ion-pair reagent amiloride mono hydrochloride and AAS determination. Talanta. 2007;72(4):1494–9.

    Article  CAS  PubMed  Google Scholar 

  21. Tang W, An Y, Row KH. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends. TrAC Trends Anal Chem. 2021;136:116187.

    Article  CAS  Google Scholar 

  22. Płotka-Wasylka J, de la Guardia M, Andruch V, Vilková M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem J. 2020;159:105539.

    Article  Google Scholar 

  23. Omar KA, Sadeghi R. Physicochemical properties of deep eutectic solvents: a review. J Mol Liq. 2022;360:119524.

    Article  CAS  Google Scholar 

  24. Yuan Z, Liu H, Yong WF, She Q, Esteban J. Status and advances of deep eutectic solvents for metal separation and recovery. Green Chem. 2022;24(5):1895–929.

    Article  CAS  Google Scholar 

  25. Wazeer I, Hizaddin HF, Hashim MA, Hadj-Kali MK. An overview about the extraction of heavy metals and other critical pollutants from contaminated water via hydrophobic deep eutectic solvents. J Environ Chem Eng. 2022;10(6):108574.

    Article  CAS  Google Scholar 

  26. Geng Y, Xiang Z, Lv C, Wang N, Wang Y, Yang Y. Recovery of gold from hydrochloric medium by deep eutectic solvents based on quaternary ammonium salts. Hydrometallurgy. 2019;188:264–71.

    Article  CAS  Google Scholar 

  27. Yılmaz Ö, Durak BY, Tekin Z, Koçoğlu ES, Bakırdere S. Accurate and precise determination of gold in plating bath solution: deep eutectic solvent based liquid phase microextraction—slotted quartz tube—flame atomic absorption spectrometry. At Spectrosc. 2019;53(2):165–73.

    Google Scholar 

  28. Mokhodoeva O, Maksimova V, Shishov A, Shkinev V. Separation of platinum group metals using deep eutectic solvents based on quaternary ammonium salts. Sep Purif Technol. 2023;305:122427.

    Article  CAS  Google Scholar 

  29. Fernández M, Boiteux J, Espino M, Gomez FJV, Silva MF. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Anal Chim Acta. 2018;1038:1–10.

    Article  PubMed  Google Scholar 

  30. Strzemski M, Dresler S, Podkościelna B, Skic K, Sowa I, Załuski D, Verpoorte R, Zielińska S, Krawczyk P, Wójciak M. Effectiveness of volatile natural deep eutectic solvents (VNADESs) for the green extraction of chelidonium majus isoquinoline alkaloids. Molecules. 2022;27(9):2815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rye TK, Martinovic G, Eie LV, Hansen FA, Halvorsen TG, Pedersen-Bjergaard S. Electromembrane extraction of peptides using deep eutectic solvents as liquid membrane. Anal Chim Acta. 2021;1175: 338717.

    Article  CAS  PubMed  Google Scholar 

  32. Liu R, Hao J, Wang Y, Meng Y, Yang Y. A separation strategy of Au(III), Pd(II) and Pt(IV) based on hydrophobic deep eutectic solvent from hydrochloric acid media. J Mol Liq. 2022;365: 120200.

    Article  CAS  Google Scholar 

  33. Karandashev VK, Khvostikov VA, Nosenko SV, Burmii ZhP. Stable highly enriched isotopes in routine analysis of rocks, soils, grounds, and sediments by ICP-MS. Inorg Mater. 2017;53(14):1432–41.

    Article  CAS  Google Scholar 

  34. Schaeffer N, Abranches DO, Silva LP, Martins MAR, Carvalho PJ, Russina O, Triolo A, Paccou L, Guinet Y, Hedoux A, Coutinho JAP. Non-ideality in thymol + menthol type V deep eutectic solvents. ACS Sustain Chem Eng. 2021;9(5):2203–11.

    Article  CAS  Google Scholar 

  35. Shishov A, Shakirova F, Markova U, Tolstoy P, Bulatov A. A new hydrophobic deep eutectic solvent based on thymol and 4-(dimethylamino)benzaldehyde: derivatization and microextraction of urea. J Mol Liq. 2022;353:118820.

    Article  CAS  Google Scholar 

  36. Krylov VA, Krylov AV, Mosyagin PV, Matkivskaya YuO. Liquid-phase microextraction preconcentration of impurities. J Anal Chem. 2011;66:331–50.

    Article  CAS  Google Scholar 

  37. King SR, Massicot J, McDonagh AM. A straightforward route to tetrachloroauric acid from gold metal and molecular chlorine for nanoparticle synthesis. Metals. 2015;5(3):1454–61.

    Article  Google Scholar 

  38. Tonello NV, D’Eramo F, Marioli JM, Crevillen AG, Escarpa A. Extraction-free colorimetric determination of thymol and carvacrol isomers in essential oils by pH-dependent formation of gold nanoparticles. Microchim Acta. 2018;185:352.

    Article  Google Scholar 

  39. Busev AI, Ivanov VM. Analytical chemistry of gold. Moscow: Nauka; 1973. (in Russian).

    Google Scholar 

  40. Wang C, Yu C. Detection of chemical pollutants in water using gold nanoparticles as sensors: a review. Rev Anal Chem. 2012;32(1):1–14.

    Article  Google Scholar 

  41. De La Calle I, Pena-Pereira F, Cabaleiro N, Lavilla I, Bendicho C. Ion pair-based dispersive liquid–liquid microextraction for gold determination at ppb level in solid samples after ultrasound-assisted extraction and in waters by electrothermal-atomic absorption spectrometry. Talanta. 2011;84(1):109–15.

    Article  PubMed  Google Scholar 

  42. Ashkenani H, Taher MA. Use of ionic liquid in simultaneous microextraction procedure for determination of gold and silver by ETAAS. Microchem J. 2012;103:185–90.

    Article  CAS  Google Scholar 

  43. Kim M, Tudino MB. Evaluation of performance of three different hybrid mesoporous solids based on silica for preconcentration purposes in analytical chemistry: from the study of sorption features to the determination of elements of group IB. Talanta. 2010;82:923–30.

    Article  CAS  PubMed  Google Scholar 

  44. Tuzen M, Saygi KO, Soylak M. Novel solid phase extraction procedure for gold(III) on Dowex M 4195 prior to its flame atomic absorption spectrometric determination. J Hazard Mater. 2008;156:591–5.

    Article  CAS  PubMed  Google Scholar 

  45. Soylak M, Unsal YE. Double-walled carbon nanotubes as a solid phase extractor for separation preconcentration of traces of gold from geological and water samples. Int J Environ Anal Chem. 2011;91:440–7.

    Article  CAS  Google Scholar 

  46. Liu R, Liang P. Determination of gold by nanometer titanium dioxide immobilized on silica gel packed microcolumn and flame atomic absorption spectrometry in geological and water samples. Anal Chim Acta. 2007;604:114–8.

    Article  CAS  PubMed  Google Scholar 

  47. Płotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green analytical procedure index. Talanta. 2018;181:204–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and High Education of the Russian Federation [GEOKHI RAS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriia Maksimova.

Ethics declarations

Conflict of interest

The authors have no competing interests relevant to the content of this article to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 866 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, V., Lapina, V., Martynov, L. et al. Gold Determination by Electrothermal Atomic Absorption Spectrometry After Preconcentration Using Natural Deep Eutectic Solvent Based on Menthol and Camphor. J. Anal. Test. 7, 435–443 (2023). https://doi.org/10.1007/s41664-023-00279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00279-7

Keywords

Navigation