Skip to main content
Log in

Contribution to the symplectic structure in the quantization rule due to noncommutativity of adiabatic parameters

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

A geometric construction of the `ala Planck action integral (quantization rule) determining adiabatic terms for fast-slow systems is considered. We demonstrate that in the first (after zero) adiabatic approximation order, this geometric rule is represented by a deformed fast symplectic 2-form. The deformation is controlled by the noncommutativity of the slow adiabatic parameters. In the case of one fast degree of freedom, the deformed symplectic form incorporates the contraction of the slow Poisson tensor with the adiabatic curvature.

The same deformed fast symplectic structure is used to represent the improved adiabatic invariant in a geometric form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Neishtadt, “The Separation of Motions in Systems with Rapidly Rotating Phase,” J. Appl. Math. Mech. 48 (2), 133–139 (1984).

    Article  MathSciNet  Google Scholar 

  2. A. I. Neishtadt, “On the Change of Adiabatic Invariant on Crossing a Separatrix in Systems with Two Degrees of Freedom,” Prikl. Mat. Mekh. 51 (5), 750–757 (1987) (English transl. in J. Appl. Math. Mech. 51, 586–592).

    MathSciNet  Google Scholar 

  3. A. I. Neishtadt, “Averaging Method and Adiabatic Invariants,” in Hamiltonian Dynamical Systems and Applications, Ed. by W. Craig (Springer Verlag, 2008), pp. 53–66.

    Chapter  Google Scholar 

  4. M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Proc. R. Soc. Lond. Ser. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. V. Berry, “The Quantum Phase, Five Years After,” in: “Geometric Phases in Physics,” A. Shapere and F. Wilczek, Eds. (World Scientific, Singapore, 1989), pp. 7–28.

    Google Scholar 

  6. B. Simon, “Holonomy, the Quantum Adiabatic Theorem and Berry’s Phase,” Phys. Rev. Lett. 5 (1), 2167–2170 (1983).

    Article  ADS  Google Scholar 

  7. M. V. Karasev, “New Global Asymptotics and Anomalies for the Problem of Quantization of the Adiabatic Invariant,” Funct. Anal. Appl. 24, 104–114 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Emmrich and A. Weinstein, “Geometry of the Transport Equation in Multicomponent WKB Approximations,” Comm. Math. Phys. 176, 701–711 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. R. G. Littlejohn and W. G. Flynn, “Geometric Phases in the Asymptotic Theory of Coupled Wave Equations,” Phys. Rev. A 44, 5239–5256 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  10. R. G. Littlejohn and S. Weigert, “Adiabatic Motion of a Neutral Spinning Particle in an Inhomogeneous Magnetic Field,” Phys. Rev. A 48 (2), 924–940 (1993).

    Article  ADS  Google Scholar 

  11. R. Montgomery, “The Connection Whose Holonomy is the Classical Adiabatic Angles of Hannay and Berry and Its Generalization to the Non-Integrable Case,” Comm. Math. Phys. 120, 269–294 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. V. Berry, “Classical Adiabatic Angles and Quantal Adiabatic Phase,” J. Phys. A: Math. Gen. 18, 15–27 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M. V. Berry and J. H. Hannay, “Classical Nonadiabatic Angles,” J. Phys. A 21, L325–L331 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J. H. Hannay, “Angle Variable Holonomy in Adiabatic Excursion of an Integrable Hamiltonian,” J. Phys. A: Math. Gen. 18, 221–230 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Colin, A. Knauf, and S. Marmi, “The Hannay Angles: Geometry, Adiabaticity, and an Example,” Comm. Math. Phys. 123 (1), 95–122 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J. Koiller, “Classical Adiabatic Angles for Slowly Moving Mechanical Systems,” Contemp. Math. 97, 159–185 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. E. Marsden, R. Montgomery, and T. Ratiu, “Reduction, Symmetry and Phases in Mechanics,” Mem. Amer. Math. Soc. 88 (436), 1–110 (1990).

    MathSciNet  MATH  Google Scholar 

  18. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (3rd ed., Springer, 2006).

    MATH  Google Scholar 

  19. P. Ehrenfest, “Welche Züge der Lichtquantenhypothese spielen in der Theorie der Wärmestrahlung einewesentliche Rolle?” Ann. Phys. 36, 91–118 (1911).

    Article  MATH  Google Scholar 

  20. P. Ehrenfest, “On Adiabatic Changes of a System in Connection with the Quantum Theory,” Proc. Amsterdam Acad. 19, 576–597 (1916).

    Google Scholar 

  21. M. V. Karasev, “Adiabatic Approximation via Hodograph Translation and Zero-Curvature Equations,” Russ. J. Math. Phys. 21 (2), 197–218 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. V. Karasev, “Adiabatics Using Phase Space Translations and Small Parameter “Dynamics”,” Russ. J. Math. Phys. 22 (1), 20–25 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. Yu. M. Vorobiev, “The Averaging in Hamiltonian Systems on Slow-Fast Phase Spaces with S1 Symmetry,” Phys. Atomic. Nuclei. 74 (12), 1770–1774 (2011).

    Article  ADS  Google Scholar 

  24. M. Avendano-Camacho, J. A. Vallejo, and Yu. Vorobiev, “Higher Order Corrections to Adiabatic Invariants of Generalized Slow-Fast Hamiltonian Systems,” J. Math. Phys. 54, 082704 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. P. Gosselin, A. Bérard, and H. Mohrbach, “Semiclassical Diagonalization of Quantum Hamiltonian and Equations of Motion with Berry Phase Corrections,” Eur. Phys. J. B 58, 137 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. P. Gosselin, J. Hanssen, and H. Mohrbach, “Recursive Diagonalization of Quantum Hamiltonians to All Orders in h,” Phys. Rev. D 77, 085008 (2008).

    Article  ADS  Google Scholar 

  27. G. Dunne, and R. Jackiw, “Peierls Substitution and Chern–Simons Quantum Mechanics,” Nuclear Phys. B Proc. Suppl. 33C, 114–118 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Jackiw, “Physical Instances of Noncommuting Coordinates,” arXiv: physics, hep-th/0110057.

  29. R. G. Littlejohn, “Geometry and Guiding Center Motion,” Contemp. Math. 28, 151–167 (1984).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Karasev.

Additional information

This research was supported by the Higher School of Economics Academic Foundation Project no. 15-01-0146.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, M.V. Contribution to the symplectic structure in the quantization rule due to noncommutativity of adiabatic parameters. Russ. J. Math. Phys. 23, 207–218 (2016). https://doi.org/10.1134/S1061920816020060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920816020060

Navigation