Skip to main content
Log in

The Hannay angles: Geometry, adiabaticity, and an example

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The Hannay angles were introduced by Hannay as a means of measuring a holonomy effect in classical mechanics closely corresponding to the Berry phase in quantum mechanics. Using parameter-dependent momentum mappings we show that the Hannay angles are the holonomy of a natural connection. We generalize this effect to non-Abelian group actions and discuss non-integrable Hamiltonian systems. We prove an averaging theorem for phase space functions in the case of general multi-frequency dynamical systems which allows us to establish the almost adiabatic invariance of the Hannay angles. We conclude by giving an application to celestial mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of mechanics. Reading, MA: Benjamin, Cummings; 2nd ed., 1978

    Google Scholar 

  2. Arnol'd, V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Usp. Mat. Nauk18, 91–192 (1963) [English translation: Russ. Math. Surv.18, 85–191 (1963)]

    Google Scholar 

  3. Arnol'd, V.I.: Mathematical methods of classical mechanics. Graduate Texts in Mathematics, Vol. 60. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  4. Arnol'd, V.I.: Geometrical methods in the theory of ordinary differential equations. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  5. Arnol'd, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. Encyclopaedia of Mathematical Sciences, Vol. 3. Dynamical systems. III. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  6. Bakhtin, V.I.: Averaging in multifrequency systems. Funkts. Anal. Prilozh.20, 1–7 (1986) [English translation: Func. Anal. Appl.20, 83–88 (1986)]

    Google Scholar 

  7. Berry, M.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A392, 45–57 (1984)

    Google Scholar 

  8. Berry, M.: Classical adiabatic angles and quantal adiabatic phase. J. Phys. A: Math. Gen.18, 15–27 (1985)

    Google Scholar 

  9. Berry, M., Hannay, J.H.: Classical non-adiabatic angles. J. Phys. A: Math. Gen.21, L325-L331 (1988)

    Google Scholar 

  10. Byrd, P.F., Friedman, M.D.: Handbook of elliptic integrals for engineers and physicists. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 67. Berlin, Göttingen, Heidelberg: Springer 1954

    Google Scholar 

  11. Chaperon, M.: Quelques questions de géométrie symplectique. Séminaire Bourbaki, 35e année,n 0 610, 231–249 (1982/83)

    Google Scholar 

  12. Conley, C.C., Zehnder, E.: The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold. Invent. Math.73, 33–49 (1983)

    Google Scholar 

  13. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern geometry — methods and applications. Part II; Graduate Texts in Mathematics, Vol. 104. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  14. Duistermaat, J.J.: On global action-angle coordinates. Commun. Pure Appl. Math.33, 687–706 (1980)

    Google Scholar 

  15. Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math.69, 259–268 (1982); Addendum:72, 153–158 (1983)

    Google Scholar 

  16. Encyclopaedia Britannica (Macropaedia), Vol. 11. Chicago: Benton; 15th ed., 1979

  17. Golin, S.: Existence of the Hannay angle for single-frequency systems. J. Phys. A: Math. Gen.21, 4535–4547 (1988)

    Google Scholar 

  18. Golin, S., Knauf, A., Marmi, S.: Hannay Angles: Existence and Geometrical Interpretation. To appear in the proceedings of the Bologna conference onNonlinear Dynamics. Turchetti, G. (ed.) Singapore: World Scientific 1989

    Google Scholar 

  19. Golin, S., Marmi, S.: Symmetries, Hannay angles and precession of orbits. Europhys. Lett.8, 399–404 (1989)

    Google Scholar 

  20. Heiskanen, W.A., Moritz, H.: Physical geodesy. San Francisco, London: Freeman 1967

    Google Scholar 

  21. Hannay, J.H.: Angle variable holonomy in adiabatic excursion of an integrable Hamiltonian. J. Phys. A: Math. Gen.18, 221–230 (1985)

    Google Scholar 

  22. Kasuga, T.: On the adiabatic theorem for the Hamiltonian system of differential equations in classical mechanics. I, II, III. Proc. Jpn. Acad.37, 366–382 (1961)

    Google Scholar 

  23. Kato, T.: On the adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn.5, 435–439 (1950)

    Google Scholar 

  24. Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Part I. New York, London: Interscience 1963

    Google Scholar 

  25. Kugler, M.: Motion in non inertial systems, theory and demonstrations. Preprint (1987)

  26. Kyner, W.T.: Rigorous and formal stability of orbits around an oblate planet. Memoirs A.M.S.81, 1–27 (1968)

    Google Scholar 

  27. Messiah, A.: Quantum mechanics, Vol. 2. North-Holland: Amsterdam 1962

    Google Scholar 

  28. Montgomery, R.: The connection whose holonomy is the classical adiabatic angles of Hannay and Berry and its generalization to the non-integrable case. Commun. Math. Phys.120, 269–294 (1988)

    Google Scholar 

  29. Neishtadt, A.I.: Averaging in multifrequency systems. II. Dokl. Akad. Nauk SSSR226, 1295–1298 (1976) [English translation: Sov. Phys. Dokl.21, 80–82 (1976)]

    Google Scholar 

  30. Sanders, J.A., Verhulst, F.: Averaging methods in nonlinear dynamical systems. Applied Mathematical Sciences, Vol. 59. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  31. Simon, B.: Holonomy, the quantum adiabatic theorem and Berry's phase. Phys. Rev. Lett.51, 2167–2170 (1983)

    Google Scholar 

  32. Strand, M.P., Reinhardt, W.P.: Semiclassical quantisation of the low lying electronic states ofH +2 . J. Chem. Phys.70, 3612–3827 (1979)

    Google Scholar 

  33. Thirring, W.: Lehrbuch der Mathematischen Physik 1. Klassische dynamische Systeme. Wien, New York: Springer 1977

    Google Scholar 

  34. Weisskopf, V.I.: Modern physics from an elementary point of view. CERN Yellow Report 70-8, Geneve (1970)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Supported by the Deutsche Forschungsgemeinschaft

Supported by the Akademie der Wissenschaften zu Berlin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golin, S., Knauf, A. & Marmi, S. The Hannay angles: Geometry, adiabaticity, and an example. Commun.Math. Phys. 123, 95–122 (1989). https://doi.org/10.1007/BF01244019

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01244019

Keywords

Navigation