Skip to main content
Log in

Zeno dynamics for open quantum systems

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we formulate limit Zeno dynamics of general open systems as the adiabatic elimination of fast components. We are able to exploit previous work on adiabatic elimination of quantum stochastic models to give explicitly the conditions under which open Zeno dynamics will exist. The open systems formulation is further developed as a framework for Zeno master equations, and Zeno filtering (that is, quantum trajectories based on a limit Zeno dynamical model). We discuss several models from the point of view of quantum control. For the case of linear quantum stochastic systems, we present a condition for stability of the asymptotic Zeno dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Misra and E.C.G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Facchi and S. Pascazio, “Quantum Zeno dynamics: mathematical and physical aspects,” J. Phys. A: Math. Theor. 41, 493001, Topical Review (2008).

    Article  MathSciNet  Google Scholar 

  3. V. P. Belavkin, “Quantum filtering of Markov signals on a background of quantum white noises,” Radiotekhn. i Elektron. 25(7), 1445–1453 (1980) [Radio Engrg. Electron. Phys. 25 (7), 76 (1980) (1981)].

    ADS  MathSciNet  Google Scholar 

  4. V. P. Belavkin, “Quantum continual measurements and a posteriori collapse on CCR,” Commun. Math. Phys. 146(3), 611–635 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. V. P. Belavkin, “Quantum stochastic calculus and quantum nonlinear filtering,” J. Multivariate Anal. 42(2), 171–201 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. R. L. Hudson and K. R. Parthasarathy, “Quantum Itô’s formula and stochastic evolutions,” Commun. Math. Phys. 93(3), 301–323 (1984).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. K. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Berlin: Birkhäuser, 1992).

    Book  MATH  Google Scholar 

  8. C. Gardiner and P. Zoller, Quantum Noise (2nd ed., ser. Springer Series in Synergetics, Springer, 2000).

    Book  MATH  Google Scholar 

  9. L. Bouten, and A. Silberfarb, “Adiabatic elimination in quantum stochastic models,” Commun. Math. Phys. 283(2), 491–505 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. L. Bouten, R. van Handel, and A. Silberfarb, “Approximation and limit theorems for quantum stochastic models with unbounded coefficients,” J. Funct. Anal. 254(12), 3123–3147 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. P. Belavkin, “Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes,” In Lecture Notes in Control and Inform Sciences 121, 245–265 (Springer-Verlag, Berlin, 1989).

    Article  MathSciNet  Google Scholar 

  12. L. Bouten, M. Guţă and H. Maassen, “Stochastic Schrödinger equations.,” J. Phys. A: Math. and General 37(9), 3189–3209 (2004).

    Article  ADS  MATH  Google Scholar 

  13. J. E. Gough and A. Sobolev, “Stochastic Schrödinger equations as limit of discrete filtering,” Open Syst. Inf. Dynamics 11(3), 235–255 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Bouten, R. van Handel and M. R. James, “An introduction to quantum filtering,” SIAM Journal on Control and Optimization 46(6), 2199–2247 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Gough and M.R. James, “Quantum feedback networks: Hamiltonian formulation,” Commun. Math. Phys. 287(3), 1109–1132 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. J. Gough and M.R. James, “The series product and its application to quantum feedforward and feedback networks,” IEEE Trans. Automatic Control 54(11), 2530–2544 (2009).

    Article  MathSciNet  Google Scholar 

  17. H. Mabuchi, “Qubit limit of cavity nonlinear optics,” Phys. Rev. A 85, 015806 (2012).

    Article  ADS  Google Scholar 

  18. D. Burgarth, P. Facchi, V. Giovannetti, H. Nakazato, S. Pascazio, and K. Yuasa, “Quantum Computing in Plato’s Cave.” arXiv:1403.5752.

  19. J.-M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche, “Quantum Zeno dynamics of a field in a cavity,” arXiv: 1207.6499 [quant-ph].

  20. L.-M. Duan and H. Kimble, “Scalable Photonic Quantum Computation through Cavity-Assisted Interactions”, Phys. Rev. Lett. 92, 127902 (2004).

    Article  ADS  Google Scholar 

  21. J. E. Gough, H. I. Nurdin, and S. Wildfeuer, “Commutativity of the adiabatic elimination limit of fast oscillatory components and the instantaneous feedback limit in quantum feedback networks,” J. Math. Phys. 51(12), 123518-1–123518-25 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. E. Gough, and H. I. Nurdin, “On structure-preserving transformations of the Itō generator matrix for model reduction of quantum feedback networks,” Phil. Trans. R. Soc. A 28 370(1979), 5422–5436 (2012).

    Article  MathSciNet  Google Scholar 

  23. J. Gough and R. van Handel, “Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode,” J. Stat. Phys. 127, 575–607 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. P. Kokotovic, H.K. Khalil, and J. O’Reilly Singular Perturbation Methods in Control: Analysis and Design (Academic Press Inc, London-New York, 1986), 141–143.

    MATH  Google Scholar 

  25. H. K. Khalil, “On the robustness of output feedback control methods to modeling errors,” IEEE Trans. Automat. Control AC-26(2), 524–526 (1981).

    Article  MathSciNet  Google Scholar 

  26. J. H. Chow and P. V. Kokotovic, “Eigenvalue placement in two time scale systems,” Proc. IFAC Symposium on Large Scale Systems, Udine, Italy pp. 321–326 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Slava Belavkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gough, J. Zeno dynamics for open quantum systems. Russ. J. Math. Phys. 21, 337–347 (2014). https://doi.org/10.1134/S1061920814030066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920814030066

Keywords

Navigation