Skip to main content
Log in

Computer simulation of surface phase transitions in semi-infinite Ising magnets

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The critical behavior of the semi-infinite Ising model is investigated by means of the Monte Carlo method at different values of the exchange interaction between surface spins. The surface and bulk transitions are demonstrated to possess different temperatures if the surface energy is smaller than that of the bulk. A change in the behavior of surface thermodynamic functions is observed if the surface energy is much smaller than that of the bulk. The static critical indices of all phase transitions are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Kaganov and A. M. Omel’yanchuk, Sov. Phys. JETP 34, 895 (1971).

    Google Scholar 

  2. D. L. Mills, Phys. Rev. 3, 3887 (1971).

    Article  Google Scholar 

  3. K. Binder, in Phase Transition and Critical Phenomena (Academic Press, New York, 1983), Vol. 3, p. 325.

    Google Scholar 

  4. M. I. Kaganov, Sov. Phys. JETP 35, 631 (1972).

    Google Scholar 

  5. H. W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997).

    Article  Google Scholar 

  6. T. C. Lubensky and H. Rubin, Phys. Rev. B 12, 3885 (1975).

    Article  Google Scholar 

  7. T. Wolfram, R. E. Dewames, and W. F. Hall, Surf. Sci. 28, 45 (1971).

    Article  Google Scholar 

  8. R. Raue, H. Hopster, and R. Clauberg, Phys. Rev. Lett. 50, 1623 (1983).

    Article  Google Scholar 

  9. H. Hopster, R. Raue, G. Guntherodt, E. Kisker, R. Clauberg, and M. Campagnaet, Phys. Rev. Lett. 51, 829 (1983).

    Article  Google Scholar 

  10. E. Kisker, K. Schroder, M. Campagna, and W. Gudat, Phys. Rev. Lett. 52, 2285 (1984).

    Article  Google Scholar 

  11. S. F. Alvarado, H. Hopster, and M. Campagna, Surf. Sci. Lett. 117, A204 1982).

    Article  Google Scholar 

  12. M. Campagna, J. Vac. Sci. Technol. A 3, 1491 (1985).

    Article  Google Scholar 

  13. A. S. Kamzin and L. A. Grigor’ev, JETP Lett. 57, 587 (1993).

    Google Scholar 

  14. A. S. Kamzin and L. A. Grigor’ev, J. Exp. Theor. Phys. 78, 200 (1994).

    Google Scholar 

  15. A. S. Kamzin, L. A. Grigor’ev, and S. A. Kamzin, Phys. Solid State 37, 33 (1995).

    Google Scholar 

  16. A. S. Kamzin and V. L. Rozenbaum, Phys. Solid State 41, 420 (1999).

    Article  Google Scholar 

  17. M. Kikuchi and Y. Okabe, Phys. Rev. Lett. 55, 1220 (1985).

    Article  Google Scholar 

  18. K. Binder and P. Hohenberg, Magnetics 12, 66 (1976).

    Article  Google Scholar 

  19. D. P. Landau and K. Binder, Phys. Rev. B 41, 4633 (1990).

    Article  Google Scholar 

  20. K. Binder and D. P. Landau, Phys. Rev. Lett. 52, 318 (1984).

    Article  Google Scholar 

  21. D. Castellanos, H. A. Farach, R. J. Creswick, and C. P. Poole, Phys. Rev. B 47, 5037 (1993).

    Article  Google Scholar 

  22. C.-Yu. Lin, J.-L. Li, Y.-H. Hsieh, and B. A. Jones, Phys. Rev. X 2, 021012 (2012).

    Google Scholar 

  23. P. Peczac, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 43, 6087 (1991).

    Article  Google Scholar 

  24. R. Binder, Phys. Rev. Lett. 47, 693 (1981).

    Article  Google Scholar 

  25. M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516 (1972).

    Article  Google Scholar 

  26. A. Mailhot, M. L. Plumer, and A. Caille, Phys. Rev. B 50, 6854 (1994).

    Article  Google Scholar 

  27. D. Loison, Phys. Lett. A 257, 83 (1999).

    Article  Google Scholar 

  28. H. W. Diehl and S. Dietrich, Phys. Rev B 24, 2878 (1981).

    Article  Google Scholar 

  29. D. P. Landau and K. Binder, Phys. Rev. B 41, 4633 (1990).

    Article  Google Scholar 

  30. C. Ruge and F. Wagner, Phys. Rev. B 52, 4209 (1995).

    Article  Google Scholar 

  31. M. Vandruscolo, M. Rovere, and A. Fasolino, Europhys. Lett. 20, 547 (1992).

    Article  Google Scholar 

  32. H. W. Diehl and M. Shpot, Nucl. Phys. B 528, 595 (1998).

    Article  Google Scholar 

  33. S. V. Belim, J. Exp. Theor. Phys. 103, 611 (2006).

    Article  Google Scholar 

  34. A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).

    Article  Google Scholar 

  35. M. Smock, H. W. Diehl, and D. P. Landau, arXiv:cond-mat/9402068 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belim.

Additional information

Original Russian Text © S.V. Belim, T.A. Koval’, 2015, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2015, No. 11, pp. 14–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belim, S.V., Koval’, T.A. Computer simulation of surface phase transitions in semi-infinite Ising magnets. J. Surf. Investig. 9, 1130–1136 (2015). https://doi.org/10.1134/S1027451015040047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451015040047

Keywords

Navigation