Skip to main content
Log in

Computer Simulation of Critical Behavior of Semi-Infinite Antiferromagnetic Material

  • Electrical and Magnetic Properties
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Phase transitions have been computer-simulated using the Monte Carlo method in the three-dimensional antiferromagnetic Ising model for the various ratios of the exchange integrals calculated over the surface and bulk of the system. The phase diagram of the system has been constructed. It has been shown that the phase diagram contains a phase in which the ordering of spins located on the surface takes place at a temperature below the Néel temperature. Contrary to the ferromagnetic Ising model, lines of phase transitions intersect at the tetracritical rather than tricritical point. The dependence of the surface critical exponents on the ratio of the exchange integrals has been obtained. It has been discovered that, at a ratio of the exchange integrals less than a certain value, the surface phase transition exhibits attributes of the phase transition of the third order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Kaganov, “Surface magnetism,” Zh. Eksp. Teor. Fiz. 62, 1190–1192 (1972).

    Google Scholar 

  2. D. L. Mills, “Effects in magnetic crystals near the ordering temperature,” Phys. Rev. 3, 3887–3894 (1971).

    Article  Google Scholar 

  3. M. I. Kaganov and N. S. Karpinskaya, “The role of surface energy in the phase transition from a paramagnetic state to a ferromagnetic state,” Zh. Eksp. Teor. Fiz. 76, 2143–2157 (1979).

    Google Scholar 

  4. K. Binder, “Magnetic surface phenomena,” in Phase transitions and critical phenomena, Ed. by C. Domb and J. L. Lebowitz (Academic, New York, 1983), pp. 325–331.

    Google Scholar 

  5. H. W. Diehl, “The theory of boundary critical phenomena,” J. Mod. Phys. B. 11, 3503–3523 (1997).

    Article  Google Scholar 

  6. T. C. Lubensky and H. Rubin, “Critical phenomena in semi-infinite systems. II. Mean-field theory,” Phys. Rev. B. 12, 3885–3901 (1975).

    Article  Google Scholar 

  7. H. W. Diehl and M. Shpot, “Massive field-theory approach to surface critical behavior in three-dimensional systems,” Nucl. Phys. B. 528, 595–647 (1998).

    Article  Google Scholar 

  8. S. V. Belim, “Critical behavior of disordered systems with a free surface,” J. Exp. Theor. Phys. 103, 611–622 (2006).

    Article  Google Scholar 

  9. S. V. Belim, “Multicritical behavior of systems with a free surface,” J. Exp. Theor. Phys. 106, 884–891 (2008).

    Article  Google Scholar 

  10. C. Rau and M. Robert, “Surface magnetization of Gd at the bulk Curie temperature,” Phys. Rev. Lett. 58, 2714–2717 (1987).

    Article  Google Scholar 

  11. C. Rau, “Ferromagnetic order and critical behavior at surfaces of ultrathin epitaxial films,” Appl. Phys. A. 49, 579–587 (1989).

    Article  Google Scholar 

  12. R. D. McGrath, R. M. Mirzababayev, and J. C. Walker, “Differences in critical behavior observed near T c with Mössbauer scattering and transmission geometries,” Phys. Lett. A. 67, 149–150 (1978).

    Article  Google Scholar 

  13. A. S. Kamzin and L. A. Grigor’ev, “Investigations of the properties of surface layers and the bulk of a crystal by Mössbauer spectroscopy,” Pis’ma Zh. Tekh. Fiz. 16, 38–41 (1990).

    Google Scholar 

  14. A. S. Kamzin and L. A. Grigor’ev, “Investigations of the magnetic properties of the surface in the range of the Néel temperature of the antiferromagnet Fe3BO6 by the Mössbauer method,” Pis’ma Zh. Eksp. Teor. Fiz. 57, 538–542 (1993).

    Google Scholar 

  15. S. Gota, M. Gautier-Soyer, and M. Sacchi, “Magnetic properties of Fe2O3(0001) thin layers studied by soft X-ray linear dichroism,” Phys. Rev. B. 64, 224407 (2001).

    Article  Google Scholar 

  16. D. P. Landau and K. Binder, “Phase diagrams and multicritical behavior of a three-dimensional anisotropic Heisenberg antiferromagnet,” Phys. Rev. B. 17, 2328–2342 (1978).

    Article  Google Scholar 

  17. C. Ruge and F. Wagner, “Critical parameters for the d = 3 Ising model in a film geometry,” Phys. Rev. B. 52, 4209–4216 (1995).

    Article  Google Scholar 

  18. M. Vendruscolo, M. Rovere, and A. Fasolino, “Magnetic-phase transitions of Ising surfaces with modified surface-bulk coupling: A Monte Carlo study,” Europhys. Lett. 20, 547–552 (1992).

    Article  Google Scholar 

  19. S. V. Belim and T. A. Koval’, “Monte Carlo study of the magnetization distribution in semi-infinite systems upon phase transitions,” Phys. Met. Metallogr. 115, 843–848 (2014).

    Article  Google Scholar 

  20. S. V. Belim and T. A. Koval’, “Computer simulation of surface phase transitions in semibounded Ising magnets,” Poverkhnost’ 11, 14–20 (2015).

    Google Scholar 

  21. C.-Yu. Lin, J.-L. Li, Y.-H. Hsieh, K.-L. Ou, and B. A. Jones, “Magnetic interaction between surfaceengineered rare-earth atomic spins,” Phys. Rev. X 2, 021012 (2012).

    Google Scholar 

  22. P. Ruiz-Diaz, T. R. Dasa, and V. S. Stepanyuk, “Tuning magnetic anisotropy in metallic multilayers by surface charging: An ab initio study,” Phys. Rev. Lett. 110, 267203 (2013).

    Article  Google Scholar 

  23. P. Ruiz-Diaz and V.S. Stepanyuk, “Effects of surface charge doping on magnetic anisotropy in capping 3d–5d(4d) multilayers deposited on highly polarizable substrates,” J. Phys. D. Appl. Phys. 47, 105006 (2014).

    Article  Google Scholar 

  24. O. O. Brovko, P. Ruiz-Dhaz, T. R. Dasa, and V. S. Stepanyuk, Controlling magnetism on metal surfaces with non-magnetic means: Electric fields and surface charging,” J. Phys.: Condens. Matter 26, 093001 (2014).

    Google Scholar 

  25. I. Bernal-Villamil and S. Bernal-Villamil, “Structure and magnetism of the (2 × 2)-FeO(111) surface,” Phys. Rev. B. 94, 075431 (2016).

    Article  Google Scholar 

  26. A. S. Kamzin and L. A. Grigor’ev, “Investigations of the magnetic properties of the surface and bulk of FeBO3 in the vicinity of the Néel temperature using simultaneous gamma, X-ray, and electron Mössbauer spectroscopy,” Fiz. Tv. Tela 36, 1271–1283 (1994).

    Google Scholar 

  27. A. S. Kamzin and R. G. Glyantsev, “Surface and volume phase states of Fe1–xGaxBO3 crystals in the vicinity of the Néel Point,” Phys. Solid State 45, 2309–2312 (2003).

    Article  Google Scholar 

  28. A. S. Kamzin and V. L. Rozenbaum, “Investigations of the magnetic state of the surface of Sr–M hexagonal ferrites in the region of the phase transition at the Curie temperature,” Fiz. Tverd. Tela 41, 468–474 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belim.

Additional information

Original Russian Text © S.V. Belim, E.V. Trushnikova, 2018, published in Fizika Metallov i Metallovedenie, 2018, Vol. 119, No. 5, pp. 465–471.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belim, S.V., Trushnikova, E.V. Computer Simulation of Critical Behavior of Semi-Infinite Antiferromagnetic Material. Phys. Metals Metallogr. 119, 441–447 (2018). https://doi.org/10.1134/S0031918X18050034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18050034

Keywords

Navigation