Skip to main content
Log in

Electrodes for potentiometric solid-electrolyte sensors with nonseparated gas spaces for measuring the contents of combustible CO and H2 gases in gas mixtures

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The results of studies of oxide electrodes for solid electrolyte potentiometric sensors for analyzing air-combustible gas (combustible gas is CO or H2) and nitrogen-combustible gas mixtures are presented. The characteristics of the electrochemical cells based on Zr0.82Y0.18O1.9 and Ce0.8(Sm0.8Ca0.2)0.2O2-δ solid electrolytes were considered. The dependences of the response of the potential of the measuring electrodes of simple oxides SnO2 and ZnO and complex oxides with a perovskite structure La0.8Sr0.2CrO3 and La0.6Sr0.4MnO3 on the concentration of carbon monoxide and hydrogen in air were studied. The most promising application was found to be hydrogen determination in the air-hydrogen mixture for sensors with a SnO2 measuring electrode with a zirconia electrolyte and CO analysis in the air-carbon monoxide mixture for sensors with a ZnO measuring electrode. The measuring electrodes and SnO2, La0.8Sr0.2CrO3, ZnO, and La0.6Sr0.4MnO3 on ceria and zirconia electrolytes showed satisfactory sensitivity to hydrogen in the hydrogen-nitrogen gas mixture at hydrogen concentrations of up to 100 ppm and at temperatures of 500–550°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liaw, B.Y. and Weppner, W., Solid State Ionics, 1990, vols. 40–41, p. 428.

    Article  Google Scholar 

  2. Lashneva, V.V., Dubok, V.A., and Matveeva, L.A., Abstracts of Papers, XI Mezhdunar. konf. “ICHMS-2009: Vodorodnoe materialovedenie i khimiya uglerodnykh nanomaterialov” (XI Int. Conf. “ICHMS-2009: Hydrogen Materials Science and Carbon Nanomaterials Chemistry”), Yalta, 2009, p. 856.

    Google Scholar 

  3. Demin, A.K., Kuzin, B.L., Lipilin, A.S., Perfiliev, M.V., and Somov, S.I., Research and Development on SOFC in the USSR, 2nd Int. Symp. on SOFC, Athens, Greece, 1991, p. 67.

    Google Scholar 

  4. Korovin, N.V., Elektrokhimicheskaya energetika (Electrochemical Power Engineering), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  5. Kozlov, A.G. and Udod, A.N., Datch. Sistemy, 2006, no. 1, p. 55.

    Google Scholar 

  6. Usui, T., Asada, A., Nakazawa, M., and Osanai, H., J. Electrochem. Soc., 1989, vol. 136, p. 534.

    Article  CAS  Google Scholar 

  7. Dobrovol’skii, Yu.A., Leonova, L.S., Ukshe, A.E., Levchenko, A.V., Baranov, A.M., and Vasil’ev, A.A., Ross. Khim. Zh., 2006, vol. 50, p. 120.

    Google Scholar 

  8. Vysokodispersnye materialy na osnove platinovykh metallov i ikh soedinenii v katalize i sovremennoi tekhnike: Mezhvuz. sb. nauchn. tr., (Highly Disperse Materials Based on Platinum Metals and Their Compounds in Catalysis and Modern Technology: Cross-Institutional Collection of Treatises), Ivanovo: Iv. Khim.-Tekhnol. Inst., 1991.

  9. Vogel, A., Baier, G., and Schüle, V., Sens. Actuators, B, 1993, vols. 15–16, p. 147.

    Article  Google Scholar 

  10. Zosel, J., Schiffel, G., Gerlach, F., Ahlborn, K., Sasum, U., Vashook, V., and Guth, U., Solid State Ionics, 2006, vol. 177, p. 2301.

    Article  CAS  Google Scholar 

  11. Garzon, F.H., Mukundan, R., and Brosha, E.L., Solid State Ionics, 2000, vols. 136–137, p. 633.

    Article  Google Scholar 

  12. Fadeev, G.I., Kalyakin, A.S., and Somov, S.I., Russ. J. Electrochem., 2010, vol. 46, p. 838.

    Article  CAS  Google Scholar 

  13. Zosel, J., Westphal, D., Jakobs, S., Müller, R., and Guth, U., Solid State Ionics, 2002, vols. 152–153, p. 525.

    Article  Google Scholar 

  14. Hibino, T., Kakimoto, S., and Sano, M., J. Electrochem. Soc., 1999, vol. 146, p. 3361.

    Article  CAS  Google Scholar 

  15. Lu, G., Miura, N., and Yamazoe, N., J. Electrochem. Soc., 1996, vol. 143, p. L154.

    Article  CAS  Google Scholar 

  16. Korotcenkov, G., Han, S.D., and Stetter, J.R., Chem. Rev., 2009, vol. 109, p. 1402.

    Article  CAS  Google Scholar 

  17. Jin, H., Plashnitsa, V.V., Breedon, M., and Miura, N., Electrochem. Solid-State Lett., 2011, vol. 14, p. J23.

    Article  CAS  Google Scholar 

  18. Fadeev, G., Kalakin, A., Demin, A., Volkov, A., Brouzgou, A., and Tsikaras, P., Int. J. Hydrogen Energy, 2013, vol. 38, p. 13481.

    Google Scholar 

  19. Steele, B.C.H., Solid State Ionics, 2000, vol. 129, p. 95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Gorbova.

Additional information

Original Russian Text © A.S. Kalyakin, G.I. Fadeev, A.N. Volkov, E.V. Gorbova, A.K. Demin, 2015, published in Elektrokhimiya, 2015, Vol. 51, No. 2, pp. 162–170.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyakin, A.S., Fadeev, G.I., Volkov, A.N. et al. Electrodes for potentiometric solid-electrolyte sensors with nonseparated gas spaces for measuring the contents of combustible CO and H2 gases in gas mixtures. Russ J Electrochem 51, 134–141 (2015). https://doi.org/10.1134/S1023193515020068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193515020068

Keywords

Navigation