Skip to main content
Log in

Solid-electrolyte amperometric sensor for measuring NO in air, nitrogen, and nitrogen-oxygen gas mixtures

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present research, the possibility of using the electrochemical amperometric sensor with a diffusion barrier, based on yttria-stabilized zirconia electrolyte and two Pt electrodes, for measuring small NO concentration (below 1 vol.%) in nitrogen, air, and О2 + N2 gas mixtures, was discussed. The sensor testing at 450–600°С demonstrated high stability and reproducibility of results and good dynamic characteristics. It was shown that the sensor exhibits specific values of the limiting current for different contents of nitric oxide in the considered gas mixtures that allows precise determining of small NO concentrations. The presence of NO in the gas mixtures containing free oxygen was found to significantly increase the sensor limiting current. The catalytic role of NO molecules in oxygen exchange at the triple phase boundary between the solid electrolyte, electrode, and gas was discussed. Effect of NO2, CO2, and H2O impurities on the sensor performance was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liaw BY, Wepner W (1980) Low temperature limiting–current oxygen sensors using tetragonal zirconia as solid electrolytes. Solid State Ionics 40(41):428–432

    Google Scholar 

  2. Peng Z, Liu M, Balko E (2001) A new type amperometric oxygen sensor based on a mixed-conducting composite membrane. Sensors Actuators B Chem 72:35–40. https://doi.org/10.1016/S0925-4005(00)00629-8

    Article  CAS  Google Scholar 

  3. Dietz H (1982) Gas-diffusion – controlled solid-electrolyte oxygen sensors. Solid State Ionics 6:175–183

    Article  CAS  Google Scholar 

  4. Azad A-M, Akbar S, Mhaisalkar SG, Birkefeld LD, Goto KS (1992) Solid-state gas sensors: a review. J Electrochem Soc 139:3690–3704

    Article  CAS  Google Scholar 

  5. Akbar S, Dutta P, Lee C (2006) High-temperature ceramic gas sensors: a review. Int J Appl Ceram Technol 3:302–311. https://doi.org/10.1111/j.1744-7402.2006.02084.x

    Article  CAS  Google Scholar 

  6. Ivers-Tiffee E, Hardtl K, Menesklou W, Riegel J (2001) Principles of solid state oxygen sensors for lean combustion gas control. Electrochim Acta 47:807–814. https://doi.org/10.1016/S0013-4686(01)00761-7

    Article  CAS  Google Scholar 

  7. Lundström I (1996) Approaches and mechanisms to solid state based sensing. Sensors Actuators B Chem 35:11–19. https://doi.org/10.1016/S0925-4005(96)02006-0

    Article  Google Scholar 

  8. Fergus JW (2007) Materials for high temperature electrochemical NOx gas sensors. Sensors Actuators B 121:652–663. https://doi.org/10.1016/j.snb.2006.04.077

    Article  CAS  Google Scholar 

  9. Miura N, Sato T, Anggraini SA, Ikeda H, Zhuiykov S (2014) A review of mixed-potential type zirconia-based gas sensors. Ionics 20:901–925. https://doi.org/10.1007/s11581-014-1140-1

    Article  CAS  Google Scholar 

  10. Shimizu Y, Nakano H, Takase S, Song J-H (2018) Solid electrolyte impedancemetric NOx sensor attached with zeolite receptor. Sensors Actuators B 264:177–183. https://doi.org/10.1016/j.snb.2018.02.146

    Article  CAS  Google Scholar 

  11. Somov S, Reinhardt G, Guth U, Gopel W (1996) Gas analysis with arrays of solid state electrochemical sensors: implications to monitor HCs and NOx in exhausts. Sensors Actuators B Chem 35-36:409–418

    Article  Google Scholar 

  12. Ueda T, Umeda M, Okawa H, Takahashi S (2012) Effect of Sr addition to La-based perovskite-type oxide as an electrode material for zirconia-based amperometric-type NOx sensor. Ionics 18:337–342. https://doi.org/10.1007/s11581-011-0651-2

    Article  CAS  Google Scholar 

  13. Reinhardt G, Baitinger V, Gopel W (1995) Oxygen electrodes of zirconia electrolytes: fundamentals and application to analysis of oxygen containing gases. Ionics 1:504–513

    Article  CAS  Google Scholar 

  14. Mizusaki J, Ohama H, Yashiro K, Kawada T (2006) A concept of chemical potential pumping effect of nonstoichiometric oxides and the NOx sensing mechanism of the perovskite-type La0.5Sr0.5FeO3. Electrochemistry 74:949–955. https://doi.org/10.5796/electrochemistry.74.949

    Article  CAS  Google Scholar 

  15. Elumalai P, Hasei M, Miura N (2006) Influence of thickness of Cr2O3 sensing-electrode on sensing characteristics of mixed-potential-type NO2 sensor based on stabilized zirconia. Electrochemistry 74:197–201

    Article  CAS  Google Scholar 

  16. Kalyakin A, Volkov A, Demin A, Gorbova E, Tsiakaras P (2019) Determination of nitrous oxide concentration using a solid-electrolyte amperometric sensor. Sensors Actuators B Chem 297:1–6. https://doi.org/10.1016/j.snb.2019.126750

    Article  CAS  Google Scholar 

  17. Pasierb P, Rekas M (2009) Solid-state potentiometric gas sensors – current status and future trends. J Solid State Electrochem 13:3–25. https://doi.org/10.1007/s10008-008-0556-9

    Article  CAS  Google Scholar 

  18. Benammar M (1994) Techniques for measurement of oxygen and air-to-fuel ratio using zirconia sensors. A review. Meas Sci Technol 5:757–767

    Article  CAS  Google Scholar 

  19. Docquier N, Candel S (2002) Combustion control and sensors: a review. Prog Energy Combust Sci 28:107–150. https://doi.org/10.1016/S0360-1285(01)00009-0

    Article  CAS  Google Scholar 

  20. Yang Y-C, Park J, Kim J, Choi A, Park CO (2009) The study of the voltage drift in high-temperature proton conductor-based hydrogen sensors adopting the solid reference electrode. Sensors Actuators B Chem 140:273–277. https://doi.org/10.1016/j.snb.2009.04.049

    Article  CAS  Google Scholar 

  21. Shuk P (2010) Process zirconia oxygen analyzer: state of art. Tech Mess 77:19–23. https://doi.org/10.1524/teme.2010.0003

    Article  CAS  Google Scholar 

  22. Miura N, Wang J, Nakatou M, Elumalai P, Zhuiykov S, Hasei M (2006) High temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized- zirconia tube and NiO sensing electrode. Sensors Actuators B Chem 114:903–909. https://doi.org/10.1016/j.snb.2005.08.009

    Article  CAS  Google Scholar 

  23. Farahani H, Wagiran R, Hamidon MN (2014) Humidity sensors principle, mechanism, and fabrication. Sensors 14:7881–7939. https://doi.org/10.3390/s140507881

    Article  CAS  PubMed  Google Scholar 

  24. Mizusaki J, Amano K, Yamauchi S, Fueki K (1987) Electrode reaction at Pt, O2(g)/stabilized zirconia interfaces. Part I: Theoretical consideration of reaction model. Solid State Ionics 22:313–322. https://doi.org/10.1016/0167-2738(87)90149-4

    Article  CAS  Google Scholar 

  25. Opitz AK, Lutz A, Kubicek M, Kubel F, Hutter H, Fleig J (2011) Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path. Electrochim Acta 56:9727–9740. https://doi.org/10.1016/j.electacta.2011.07.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vargheese V, Murakami J, Bando KK, Ghampson IT, Yun G-N, Kobayashi Y, Oyama ST (2020) The direct molecular oxygen partial oxidation of CH4 to dimethyl ether without methanol formation over a Pt/Y2O3 catalyst using an NO/NO2 oxygen atom shuttle. J Catal 389:352–365. https://doi.org/10.1016/j.jcat.2020.05.021

    Article  CAS  Google Scholar 

  27. Khrapkovskii GM, Shamsutdinov TF, Chachkov DV, Shamov AG (2004) Energy of the O–NO2 bond dissociation and the mechanism of the gas-phase monomolecular decomposition of aliphatic alcohol nitroesters. J Mol Struct (THEOCHEM) 686:185–192. https://doi.org/10.1016/j.theochem.2004.09.001

    Article  CAS  Google Scholar 

  28. Rosser WA, Wise H (1956) Thermal decomposition of nitrogen dioxide. J Chem Phys 24:493–494. https://doi.org/10.1063/1.1742534

    Article  CAS  Google Scholar 

  29. Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J, Zhang J (2017) A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem Soc Rev 46:1427–1463. https://doi.org/10.1039/c6cs00403b

    Article  CAS  PubMed  Google Scholar 

  30. Ni M, Leung MKH, Leung DYC (2008) Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). Int J Hydrog Energy 33:2337–2354. https://doi.org/10.1016/j.ijhydene.2008.02.048

    Article  CAS  Google Scholar 

  31. Ohlin L, Bazin P, Thibault-Starzyk F, Hedlund J, Grahn M (2013) Adsorption of CO2, CH4, and H2O in Zeolite ZSM-5 Studied using in situ ATR-FTIR spectroscopy. J Phys Chem C 117(33):16972–16982. https://doi.org/10.1021/jp4037183

    Article  CAS  Google Scholar 

Download references

Funding

This research was performed according to the budgetary plan of the Institute of High Temperature Electrochemistry and funded by the Budget of Russian Federation, State Registration Number АААА-А19-119020190078-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Dunyushkina.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalyakin, A.S., Volkov, A.N. & Dunyushkina, L.A. Solid-electrolyte amperometric sensor for measuring NO in air, nitrogen, and nitrogen-oxygen gas mixtures. Ionics 27, 2697–2705 (2021). https://doi.org/10.1007/s11581-021-04055-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04055-4

Keywords

Navigation