Skip to main content
Log in

The effectiveness of molecular markers for the identification of Lr28, Lr35, and Lr47 genes in common wheat

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The effectiveness of molecular markers for the identification of leaf rust resistance genes Lr28, Lr35 and Lr47 transferred to common wheat from Ae. speltoides was assessed using samples of Triticum spp. and Aegilops spp. The markers Sr39F2/R3, BCD260F1/35R2 of the gene Lr35 and PS10 of the Lr47 gene were characterized by high efficiency and were revealed in the lines of common wheat containing these genes, and samples of Ae. speltoides species, the donor of these genes. The marker SCS421 of the Lr28 gene and the markers Sr39#22r, Sr39#50s, BE500705 of the Lr35/Sr39 genes turned out to be less specific. The marker SCS421 was amplified in the samples of the T. timopheevii species, line KS90WRC010 (Lr41), the cultivar of common wheat Pamyati Maystrenko, obtained using synthetic hexaploid T. timopheevii × Ae. tauschii and introgressive lines obtained using Ae. speltoides. The marker BE500705, which indicates the absence of the Lr35/Sr39 genes, was not revealed in the lines TcLr35 and MqSr39, in Ae. speltoides, Ae. tauschii and T. boeoticum (kk-61034, 61038). Analysis of the nucleotide sequences of amplification products obtained with the markers SCS421 and Sr39#22r indicated their low homology with TcLr28 and TcLr35. Using molecular markers, a different distribution of the Lr28 (77%), Lr35 (100%) and Lr47 (15%) genes in 13 studied samples of Ae. speltoides was shown. In introgressive lines derived from Ae. speltoides, contemporary Russian cultivars of common wheat and triticale the Lr28, Lr35, Lr47 genes were not revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McIntosh, R.A., Yamazaki, Y., Dubcovsky, J., et al., Catalogue of gene symbols for wheat, Wheat Genetic Resources Database KOMUGI, 2008. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp.

    Google Scholar 

  2. McIntosh, R.A., Dubcovsky, J., Rogers, J., et al., Catalogue of gene symbols for wheat: 2011 supplement, Wheat Genetic Resources Database KOMUGI, 2011. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp.

    Google Scholar 

  3. McIntosh, R.A., Wellings, C.R., and Park, R.F., Wheat Rusts: an Atlas of Resistance Genes, Australia: CSIRO Publ., 1995.

    Book  Google Scholar 

  4. Cherukuri, D.P., Gupta, S.K., Charpe, A., et al., Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat, Euphytica, 2005, vol. 143, pp. 19–26.

    Article  CAS  Google Scholar 

  5. Helguera, M., Khan, I.A., and Dubcovsky, J., Development of PCR markers for wheat leaf rust resistance gene Lr47, Theor. Appl. Genet., 2000, vol. 101, pp. 625–631.

    Article  CAS  Google Scholar 

  6. Mago, R., Zhang, P., Bariana, H.S., et al., Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection, Theor. Appl. Genet., 2009, vol. 124, pp. 65–70.

    Google Scholar 

  7. Mago, R. and Dundas, I., Disease resistance. Sr39. http://maswheat.ucdavis.edu/protocols/Sr39/index.htm

  8. Kumar, A.A. and Raghavaiah, P., Effect of the leaf rust resistance gene Lr28 on grain yield and bread-making quality of wheat, Plant Breed., 2004, vol. 123, pp. 35–38.

    Article  CAS  Google Scholar 

  9. Dubcovsky, J., Lukaszewski, A.J., Echaide, M., et al., Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes, Crop Sci., 1998, vol. 38, pp. 1655–1660.

    Article  CAS  Google Scholar 

  10. Helguera, M., Vanzetti, L., Soria, M., et al., PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines, Crop Sci., 2005, vol. 45, pp. 728–734.

    Article  CAS  Google Scholar 

  11. Marais, G.F., Bekker, T.A., Eksteen, A., et al., Attempts to remove gametocidal genes co-transferred to common wheat with rust resistance from Aegilops speltoides, Euphytica, 2010, vol. 171, pp. 71–85.

    Article  CAS  Google Scholar 

  12. Odintsova, I.G., Agafonova, N.A., and Boguslavskii, R.L., Introgression lines of common wheat with resistance to leaf rust, transmitted from Aegilops speltoides, in Iskhodnyi material i problemy selektsii pshenitsy i triticale (Starting Material and the Problems of Wheat and Triticale Breeding), vol. 142 of Sbornik nauchnykh trudov po prikladnoi botanike, genetike i selektsii (Collection of Scientific Papers on Applied Botany, Genetics, and Plant Breeding), Leningrad: Vsesoyuznii Institut Rastenievodstva, 1991, pp. 106–110.

    Google Scholar 

  13. Ibraimova, Zh.K., Tankimanova, M.K., and Bersimbaev, R.I., Chromosomal localization of the gametocidic gene in a wheat line, Cytol. Genet., 2001, vol. 35, no. 5, pp. 15–19.

    Google Scholar 

  14. Chelkowski, J., Golka, L., and Stepien, L., Application of STS markers for leaf rust resistance genes in nearisogenic lines of spring wheat cv. Thatcher, J. Appl. Genet., 2003, vol. 44, pp. 323–338.

    PubMed  Google Scholar 

  15. Błaszczyk, L., Chelkowski, J., Korsun, V., et al., Verification of STS markers for leaf rust resistance genes of wheat by seven European laboratories, Cell. Mol. Biol. Lett., 2004, vol. 9, pp. 805–817. http://www.cmbl.org.pl

    PubMed  Google Scholar 

  16. Błaszczyk, L., Krämer, I., Ordon, F., et al., Validity of selected DNA markers for breeding leaf rust resistant wheat, Cereal Res. Commun., 2008, vol. 36, no. 2, pp. 201–213.

    Article  Google Scholar 

  17. Nocente, F., Gazza, L., and Pasquini, M., Evaluation of leaf rust resistance genes Lr1, Lr9, Lr24, Lr47 and their introgression into common wheat cultivars by marker-assisted selection, Euphytica, 2007, vol. 155, pp. 329–336.

    Article  CAS  Google Scholar 

  18. Serfling, A., Krämer, I., Lind, V., et al., Diagnostic value of molecular markers for Lr genes and characterization of leaf rust resistance of German winter wheat cultivars with regard to the stability of vertical resistance, Eur. J. Plant Pathol., 2011, vol. 130, no. 4, pp. 559–575.

    Article  CAS  Google Scholar 

  19. Gold, J., Harder, D., Townley-Smith, F., et al., Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines, Electron. J. Biotechnol., 1999, vol. 2, no. 1, pp. 35–40.

    Google Scholar 

  20. Seyfarth, R., Feuillet, C., Schachermayr, G., et al., Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat, Theor. Appl. Genet., 1999, vol. 99, pp. 554–560.

    Article  CAS  PubMed  Google Scholar 

  21. Naik, S., Gill, K.S., Rao, V.S.P., et al., Identification of a STS marker linked to an Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat, Theor. Appl. Genet., 1998, vol. 97, pp. 535–540.

    Article  CAS  Google Scholar 

  22. Disease resistance: Lr47. http://maswheat.ucdavis.edu/protocols/Lr47/index.htm

  23. Bipinraj, A., Honrao, B., Prashar, M., et al., Validation and identification of molecular markers linked to the leaf rust resistance gene Lr28 in wheat, J. Appl. Genet., 2011, vol. 52, pp. 171–175.

    Article  CAS  PubMed  Google Scholar 

  24. Niu, Z., Klindworth, D.L., Friesen, T.L., et al., Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering, Genetics, 2011, vol. 187, pp. 1011–1021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Golovnina, K.A., Glushkov, S.A., Blinov, A.G., et al., Molecular phylogeny of the genus Triticum L., Plant Syst. Evol., 2007, vol. 264, pp. 195–216. doi 10.1007/S00606-006-0476-x

    Article  CAS  Google Scholar 

  26. Edwards, K., Johnstone, C., and Thompson, C., A simple and rapid method for the preparation of plant genomic DNA for PCR analysis, Nucleic Acids Res., 1991, vol. 19, no. 6, p. 1349.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Dorokhov, D.B. and Kloke, E., Rapid and economical technology of RAPD analysis of plant genomes, Russ. J. Genet., 1997, vol. 3, no. 4, pp. 443–450.

    Google Scholar 

  28. Thompson, J.D., Gibson, T.J., Plewniak, F., et al., The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 1997, vol. 24, pp. 4876–4882.

    Article  Google Scholar 

  29. Hall, T.A., Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  30. Saitou, N. and Nei, M., The neighbour-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, vol. 4, pp. 406–425.

    CAS  PubMed  Google Scholar 

  31. Van de Peer, Y. and De Wachter, R., Treecon for windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment, Comput. Appl. Biosci., 1994, vol. 10, pp. 569–570.

    PubMed  Google Scholar 

  32. Mikhailova, L.A. and Kvitko, K.V., Laboratory methods of brown rust pathogen growth, Mikol. Fitopatol., 1970, vol. 4, no. 3, pp. 269–273.

    Google Scholar 

  33. Mesterházy, Á., Barto, P., Goyeau, G., et al., European virulence survey for leaf rust in wheat, Agronomie, 2000, vol. 20, pp. 793–804.

    Article  Google Scholar 

  34. L. I. Laikova, I. A. Belan, E. D. Badaeva, L. P. Rosseeva, S. S. Shepelev, V. K. Shumny, and L. A. Pershina, Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii Zhuk. × Aegilops tauschii Coss., Russ. J. Genet., 2013, vol. 49, no. 1, pp. 89–97.

    Article  CAS  Google Scholar 

  35. E. R. Davoyan, R. O. Davoyan, I. V. Bebyakina, O. R. Davoyan, Yu. S. Zubanova, A. M. Kravchenko, and A. N. Zinchenko, Identification of a leaf-rust resistance gene in species of Aegilops L., synthetic forms, and introgression lines of common wheat, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 4, pp. 325–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Gultyaeva.

Additional information

Original Russian Text © E.I. Gultyaeva, A.S. Orina, Ph.B. Gannibal, O.P. Mitrofanova, I.G. Odintsova, L.I. Laikova, 2014, published in Genetika, 2014, Vol. 50, No. 2, pp. 147–156.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gultyaeva, E.I., Orina, A.S., Gannibal, P.B. et al. The effectiveness of molecular markers for the identification of Lr28, Lr35, and Lr47 genes in common wheat. Russ J Genet 50, 131–139 (2014). https://doi.org/10.1134/S1022795414020069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414020069

Keywords

Navigation