Skip to main content
Log in

Detection and quantitative determination of the crystalline phase in poly(vinyl alcohol) cryogels by ATR FTIR spectroscopy

  • Structure and Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The molecular structure of poly(vinyl alcohol) in its cryogels obtained via a single freeze-thaw cycle of aqueous solutions of the polymer is investigated by ATR FTIR spectroscopy. By means of Fourier deconvolution and spectral subtraction, methods, it is found that the spectra of cryogels contain a hidden crystallinity band at 1144 cm−1 due to poly(vinyl alcohol). For poly(vinyl alcohol) films crystallized at different temperatures, a quantitative relationship is established between the relative intensity of absorption at a frequency of 1144 cm−1 in the spectra of the polymer and its degree of crystallinity estimated via wide-angle X-ray diffraction. In terms of this relationship, the degree of crystallinity of poly(vinyl alcohol) in the cryogels is determined from their ATR FTIR spectra. This parameter is found to be 6, 10, and 14% for the cryogels with PVA concentrations of 9, 17, and 29%, respectively. The obtained data suggest that the formation of the cryogels is accompanied not only by the appearance of polymer crystallites but also by a change in the system of hydrogen bonds between the polymer and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Lozinskii, Usp. Khim. 67, 641 (1998).

    Google Scholar 

  2. V. I. Lozinsky and F. M. Plieva, Enzyme Microbiol. Technol. 23, 227 (1998).

    Article  CAS  Google Scholar 

  3. C. M. Hassan and N. A. Peppas, Adv. Polym. Sci. 153, 37 (2000).

    Article  CAS  Google Scholar 

  4. T. Hatakeyema, J. Uno, C. Yamada, A. Kishi, and H. Hatakeyama, Thermochim. Acta 431, 144 (2005).

    Article  CAS  Google Scholar 

  5. J. P. Runt, Encyclopedia of Polymers Science and Engineering (Wiley, New York, 1985), Vol. 4.

    Google Scholar 

  6. M. Watase and K. Nishinari, J. Polym. Sci., Part B: Polym. Phys. 23, 1803 (1985).

    Article  CAS  Google Scholar 

  7. R. Ricciardi, G. Mangiapia, F. L. Celso, L. Paduano, R. Triolo, F. Auriemma, C. D. Rosa, and F. Laupretre, Chem. Mater. 17, 1183 (2005).

    Article  CAS  Google Scholar 

  8. L. E. Millon, M. P. Nieh, J. L. Hutter, and W. Wan, Macromolecules 40, 3655 (2007).

    Article  CAS  Google Scholar 

  9. P. J. Willcox, D. W. Howie, K. Schmidt-Rohr, D. A. Hoagland, S. P. Gido, S. Pudjijanto, L. W. Kleiner, and S. Venkatraman, J. Polym. Sci., Part B: Polym. Phys. 37, 3438 (1999).

    Article  CAS  Google Scholar 

  10. R. Ricciardi, C. Gaillet, G. Ducouret, F. Lafuma, and F. Laupretre, Polymer 44, 3375 (2003).

    Article  CAS  Google Scholar 

  11. J. L. Valentin, D. Lopez, R. Hernandez, C. Mijangos, and K. Saalwachter, Macromolecules 42, 263 (2009).

    Article  CAS  Google Scholar 

  12. M. Nagura, T. Hamano, and H. Ishikawa, Polymer 30, 762 (1989).

    Article  CAS  Google Scholar 

  13. L. E. Stephans and N. Foster, Macromolecules 31, 1644 (1998).

    Article  CAS  Google Scholar 

  14. J. Koenig, Adv. Polym. Sci. 54, 87 (1984).

    Article  CAS  Google Scholar 

  15. A. F. Allain, P. Paquin, and M. Subirade, Int. J. Biol. Macromol. 26, 337 (1999).

    Article  CAS  Google Scholar 

  16. O. Ramon, E. Kesselman, R. Berkovici, Y. Cohen, and Y. Paz, J. Polym. Sci., Part B: Polym. Phys. 39, 1665 (2001).

    Article  CAS  Google Scholar 

  17. S. R. Banks, C. Sammon, C. D. Melia, and P. Timmins, Appl. Spectrosc. 59, 452 (2005).

    Article  CAS  Google Scholar 

  18. D. K. Buslov, N. I. Sushko, and O. N. Tretinnikov, Zh. Prikl. Spectrosk. 75, 490 (2008).

    Google Scholar 

  19. H. Todokoro, S. Seki, and T. Nitta, Bull. Chem. Soc. Jpn. 28, 559 (1955).

    Article  Google Scholar 

  20. V. N. Lebedeva, G. I. Distler, and E. I. Kortukova, Vysokomol. Soedin., Ser. A 9, 2076 (1967).

    CAS  Google Scholar 

  21. G. D. Korolenko, Yu. S. Lipatov, F. G. Fabulyak, G. F. Pugachevskii, Sh. Tuichiev, and V. S. Lukashev, Vysokomol. Soedin., Ser. A 26, 257 (1984).

    Google Scholar 

  22. D. K. Buslov, N. I. Sushko, and O. N. Tretinnikov, Polymer Science, Ser. A 53, 1121 (2011).

    Article  CAS  Google Scholar 

  23. O. N. Tretinnikov and S. A. Zagorskaya, Zh. Prikl. Spectrosk. 78, 965 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Tretinnikov.

Additional information

Original Russian Text © O.N. Tretinnikov, N.I. Sushko, S.A. Zagorskaya, 2013, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2013, Vol. 55, No. 2, pp. 158–164.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tretinnikov, O.N., Sushko, N.I. & Zagorskaya, S.A. Detection and quantitative determination of the crystalline phase in poly(vinyl alcohol) cryogels by ATR FTIR spectroscopy. Polym. Sci. Ser. A 55, 91–97 (2013). https://doi.org/10.1134/S0965545X13020089

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13020089

Keywords

Navigation