Skip to main content
Log in

Manufacturing of lower olefins from natural gas through methanol and its derivatives (review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

State-of-the-art processes for the manufacturing of lower olefins (mainly ethylene and propylene) from natural gas through methanol, dimethyl ether, and ethanol are surveyed. The processes involving the synthesis of dimethyl ether via the dehydration of methanol and ethanol production via methanol homologation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Men’shchikov and M. Yu. Sinev, Katal. Prom-sti, No. 1, 25 (2005).

  2. Eur. Chem. News 82, 10 (2005).

  3. A. B. Avtonomov, Elektr. Stan., No. 5, 55 (2003).

  4. V. S. Arutyunov and O. V. Krylov, Oxidative Transformations of Methane (Nauka, Moscow, 1998) [in Russian].

    Google Scholar 

  5. R. A. Sheldon, Chemicals from Synthesis Gas: Catalytic Reactions of CO and H 2 (D. Reidel, Dordrecht, 1983; Khimiya, Moscow, 1987).

    Google Scholar 

  6. G. Cai, Z. Liu, R. Shi, et al., Appl. Catal., A 125, 29 (1995).

    Article  CAS  Google Scholar 

  7. M. Stoker, Micropor. Mesopor. Mater. 29, 3 (1999).

    Article  Google Scholar 

  8. B. Notari, V. Fattore, and G. Manara, Dimethyl Ether (Assoreni, Milan, 1978).

    Google Scholar 

  9. ICIS Chem. Bus. 1, 28 (2006).

  10. Chem. Eng. News 83, 18 (2005).

  11. ICIS Chem. Bus. 1, 27 (2006).

  12. Eur. Chem. News 79, 30 (2003).

  13. C. D. Chang and A. J. Silvestri, J. Catal. 47, 249 (1977).

    Article  CAS  Google Scholar 

  14. C. D. Chang, C. T.-W. Chu, and R. F. Socha, J. Catal. 86, 289 (1984).

    Article  CAS  Google Scholar 

  15. C. D. Chang, W. H. Lang, and R. L. Smith, J. Catal. 56, 169 (1979).

    Article  CAS  Google Scholar 

  16. US Patent No. 4,025,576 (1977).

  17. M. G. Nowden, J. J. C. Botha, and M. S. Scurrel, Chem. Ind. 46, 391 (1992).

    Google Scholar 

  18. US Patent No. 4,052,479 (1977).

  19. US Patent No. 4,058,576 (1977).

  20. US Patent No. 4,229,608 (1980).

  21. US Patent No. 4,912,281 (1990).

  22. D. F. A. Wunder and E. I. Leupold, Angew. Chem. 92, 125 (1980).

    Article  CAS  Google Scholar 

  23. E. A. Stewart, D. W Johnson, and M. D. Shannon, in Innovation in Zeolite Materials Science, Ed. by P. J. Grobet, W. J. Mortier, E. F. Vansant, and G. Schulz-Ekloff (Elsevier, Amsterdam, 1987), p. 57.

    Google Scholar 

  24. US Patent No. 4,172,856 (1979).

  25. US Patent No. 6,506,954 (2003).

  26. US Patent No. 4,434,314 (1984).

  27. NO Pat. Appl. No. 872505 (1987).

  28. G. Cai, Zh. Liu, R. Shi, et al., Appl. Catal., A 125, 29 (1995).

    Article  CAS  Google Scholar 

  29. US Patent No. 6,531,639 (2003).

  30. J. Liang, H. Li, S. Zhao, et al., Appl. Catal. 64, 31 (1990).

    Article  CAS  Google Scholar 

  31. D. B. Luk’yanov, Kinet. Katal. 30, 216 (1989).

    CAS  Google Scholar 

  32. US Patent No. 3,894,104 (1975).

  33. US Patent No. 4,066,714 (1978).

  34. JP Appl. No. 59-219134 (1984).

  35. S. Nowak, Freiberg. Forschungsh. A 763, 116 (1987).

    CAS  Google Scholar 

  36. L. Juan, in Zeolites, Ed. by B. Drzaj, S. Hocevar, and S. Pejovnik (Elsevier, Amsterdam, 1985), p. 611.

    Google Scholar 

  37. G. Cai, G. Chen, Q. Wang, et al., in Zeolites, Ed. by B. Drzaj, S. Hocevar, and S. Pejovnik (Elsevier, Amsterdam, 1985), p. 319.

    Google Scholar 

  38. I. Balkrishnan, B. S. Rao, S. G. Hegde, et al., J. Mol. Catal. 17, 261 (1982).

    Article  CAS  Google Scholar 

  39. US Patent No. 3,529,033 (1970).

  40. US Patent No. 4,804,800 (1989).

  41. US Patent No. 3,911,041 (1975).

  42. US Patent No. 3,899,544 (1975).

  43. W. W. Kaeding and S. A. Butter, J. Catal. 61, 155 (1980).

    Article  CAS  Google Scholar 

  44. A. M. Al-Jarallah, U. A. El-Natafy, and M. M. Abdillahi, Appl. Catal., A 154, 117 (1997).

    Article  CAS  Google Scholar 

  45. T. Inui, A. Miyamoto, H. Matsuda, et al., in New Developments in Zeolite Science and Technology, Ed. by Y. Murakami, A. Jijima, and J. W. Ward (Elsevier, Tokyo, 1986), p. 859.

    Google Scholar 

  46. T. Inui, H. Matsuda, O. Yamase, et al., J. Catal. 98, 491 (1986).

    Article  CAS  Google Scholar 

  47. T. Mole, G. Bett, and D. J. Seddon, J. Catal. 84, 435 (1983).

    Article  CAS  Google Scholar 

  48. US Patent No. 6,046,372 (2000).

  49. US Patent No. 4,035,430 (1977).

  50. US Patent No. 3,965,205 (1976).

  51. G. Chen, J. Liang, Q. Wang, et al., in Methane Conversion, Ed. by D. M. Bibby, C. D. Chang, R. F. Howe, and S. Yurchak (Elsevier, Amsterdam, 1988), p. 201.

    Google Scholar 

  52. W. J. H. Dehertog and G. F. Froment, Appl. Catal. 71, 153 (1991).

    Article  CAS  Google Scholar 

  53. Y. Ono, E. Emai, and T. Mori, Z. Phys. Chem. Neu Folde 115, 99 (1979).

    CAS  Google Scholar 

  54. US Patent No. 4,440,871 (1984).

  55. S. W. Kaiser, Arabian J. Sci. Eng. 10, 361 (1985).

    CAS  Google Scholar 

  56. J. M. O. Lewis, Methanol to Olefins Process Using Aluminophosphate Molecular Sieve Catalysts. Catalysis 1987 (Elsevier, Amsterdam, 1988).

    Google Scholar 

  57. Kang Misook, J. Mol. Catal., A 160, 437 (2000).

    Article  Google Scholar 

  58. D. R. Dubois, D. L. Obrzut, J. Liu, et al., Fuel Process. Technol. 83, 203 (2003).

    Article  CAS  Google Scholar 

  59. US Patent No. 5,714,662 (1998).

  60. B. V. Vora, P. R. Pujado, L. W. Miller, et al., Stud. Surf. Sci. Catal. 136, 537 (2001).

    Article  CAS  Google Scholar 

  61. US Patent No. 6,632,971 (2003).

  62. US Patent No. 6,784,330 (2004).

  63. EEC Patent No. 1,479,662 (2004).

  64. US Patent No. 6,872,867 (2005).

  65. US Patent No. 6,717,023 (2004).

  66. US Patent No. 6,737,556 (2004).

  67. US Patent No. 7,034,196 (2006).

  68. US Patent No. 6,441,262 (2002).

  69. N. Y. Chen and W. J. Reagan, J. Catal. 50, 123 (1979).

    Article  Google Scholar 

  70. C. Lo, C. A. Giurumescu, R. Radhakrishnan, and B. L. Trout, Mol. Phys. 102, 281 (2004).

    Article  CAS  Google Scholar 

  71. J. Bandiera and C. Naccache, Appl. Catal. 69, 139 (1991).

    Article  CAS  Google Scholar 

  72. S. R. Blaszkowski and R. A. Van Santen, J. Am. Chem. Soc. 118, 5152 (1996).

    Article  CAS  Google Scholar 

  73. S. R. Blaszkowski and R. A. Van Santen, J. Am. Chem. Soc. 119, 5020 (1997).

    Article  CAS  Google Scholar 

  74. N. Tajima, T. Tsuneda, F. Toyama, and K. Hirao, J. Am. Chem. Soc. 120, 8222 (1998).

    Article  CAS  Google Scholar 

  75. N. S. Khashagul’gova, S. N. Khadzhiev, and A. A. Kubasov, Vestn. Mosk. Univ., Ser. 2: Khim. 22, 156 (1981).

    CAS  Google Scholar 

  76. T. R. Forester, S. T. Wong, and R. F. Howe, J. Chem. Soc., Chem. Commun., 1611 (1986).

  77. W. O. Haag, R. M. Lago, and P. G. Rodewald, J. Mol. Catal. 17, 161 (1982).

    Article  CAS  Google Scholar 

  78. US Patent No. 4,083,388 (1978).

  79. N. S. Khashagul’gova, S. N. Khadzhiev, and A. A. Kubasov, Kinet. Katal. 24, 1261 (1983).

    CAS  Google Scholar 

  80. US Patent No. 4,482,772 (1984).

  81. I. M. Dahl and S. Kolboe, J. Catal. 149, 458 (1994).

    Article  CAS  Google Scholar 

  82. Y. Ono and T. Mori, J. Chem. Soc., Faraday Trans. 77, 2209 (1981).

    Article  CAS  Google Scholar 

  83. D. Kagi, J. Catal. 69, 242 (1981).

    Article  CAS  Google Scholar 

  84. J. Novakova, L. Kubelkova, K. Habersberger, and Z. Dolejsek, J. Chem. Soc., Faraday Trans. 80, 1457 (1984).

    Article  CAS  Google Scholar 

  85. G. J. Hutchings, F. Gottschalk, M. V. M. Hall, and R. Hunter, J. Chem. Soc., Faraday Trans. 83, 571 (1987).

    Article  CAS  Google Scholar 

  86. L. Kubelkova, J. Novakova, and K. Nedomova, J. Catal. 124, 441 (1990).

    Article  CAS  Google Scholar 

  87. T. Mole and J. A. Whiteside, J. Catal. 75, 284 (1982).

    Article  CAS  Google Scholar 

  88. J. E. Jackson and F. M. Bertsch, J. Am. Chem. Soc. 112, 9085 (1990).

    Article  CAS  Google Scholar 

  89. J. R. A. Clarke, R. Darcy, B. F. Hegarty, et al., J. Chem. Soc., Chem. Commun., 425 (1986).

  90. Hydrocarbon Process., Int. Ed. 82, 128 (2003).

    Google Scholar 

  91. US Patent No. 7,015,369 (2006).

  92. DE Patent No. 10,027,159 (2001).

  93. US Patent No. 2,266,885 (2004).

  94. EPC Patent No. 0,448,000 (1991).

  95. DE Patent No. 19,723,363 (1998).

  96. US Patent No. 6,852,897 (2002).

  97. M. Rothaemel and H.-D. Holtmann, in Proceedings of DGMK Conference “Creating Value from Light Olefins-Production and Conversion”, Hamburg, 2001.

  98. H. Koempel, W. Liebner, and M. Wagner, in Proceedings of Second ICIS-LOR World Olefin Conference, Amsterdam, 2003.

  99. Chem. Eng. 112, 15 (2005).

  100. US Patent No. 4,346,020 (1982).

  101. US Patent No. 4,954,665 (1990).

  102. US Patent No. 2,623,906 (1952).

  103. US Patent No. 4,451,678 (1984).

  104. I. Wender, Catal. Rev. 14, 97 (1979).

    Article  Google Scholar 

  105. US Patent No. 4,328,379 (1982).

  106. US Patent No. 4,239,925 (1980).

  107. US Patent No. 4,352,946 (1982).

  108. US Patent No. 4,423,258 (1983).

  109. US Patent No. 4,304,946 (1981).

  110. US Patent No. 4,476,326 (1984).

  111. US Patent No. 3,285,948 (1966).

  112. US Patent No. 4,133,966 (1979).

  113. US Patent No. 4,324,927 (1982).

  114. US Patent No. 4,253,987 (1981).

  115. US Patent No. 4,239,924 (1980).

  116. US Patent No. 4,233,466 (1980).

  117. US Patent No. 4,423,257 (1983).

  118. US Patent No. 4,409,404 (1983).

  119. US Patent No. 4,424,384 (1984).

  120. US Patent No. 4,111,837 (1978).

  121. K. G. Moloy and R. W. Wegman, J. Am. Chem. Soc. 114, 323 (1992).

    Google Scholar 

  122. K. G. Moloy and R. W. Wegman, Organometallics 8, 2883 (1989).

    Article  CAS  Google Scholar 

  123. M. J. Chen and J. W. Rathke, Organometallics 6, 1833 (1987).

    Article  CAS  Google Scholar 

  124. M. J. Chen and H. M. Feder, in Catalysis of Organic Reactions, Ed. by W. Moser (Marcel Dekker, New York, 1981), p. 273.

    Google Scholar 

  125. US Patent No. 4,301,312 (1981).

  126. A. Ya. Rozovskii, Ross. Khim. Zh. 47(6), 53 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kolesnichenko.

Additional information

Original Russian Text © S.N. Khadzhiev, N.V. Kolesnichenko, N.N. Ezhova, 2008, published in Neftekhimiya, 2008, Vol. 48, No. 5, pp. 323–333.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khadzhiev, S.N., Kolesnichenko, N.V. & Ezhova, N.N. Manufacturing of lower olefins from natural gas through methanol and its derivatives (review). Pet. Chem. 48, 325–334 (2008). https://doi.org/10.1134/S0965544108050010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544108050010

Keywords

Navigation