Skip to main content
Log in

Simulating the proton transfer reaction in the phosphoric acid-N,N-dimethylformamide system by means of the AM1 semiempirical method

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Using the AM1 semiempirical method, we calculate the energy profile of the proton transfer reaction during the formation of a hydrogen bond between molecules of phosphoric acid (H3PO4) and N,N-dimethylformamide (DMFA) in both gas and liquid phases. The energy barriers of the reaction transition are estimated. The changes in the geometric parameters of hydrogen bonds and the intermolecular interaction energy of H3PO4-DMFA and (H3PO4)2-DMFA complexes during the transition from the gas phase into the solution are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zukowska, M. Rogowska, A. Wojda, et al., Solid State Ionics 136–137, 1205 (2000).

    Article  Google Scholar 

  2. D. Raducha, W. Wieczorek, Z. Florjanczyk, and J. R. Stevens, J. Phys. Chem. 100(51), 20126 (1996).

    Article  CAS  Google Scholar 

  3. N. H. Jalani, M. Ramani, K. Ohlsson, et al., J. Power Sources 160, 1096 (2006).

    Article  CAS  Google Scholar 

  4. H. Pu and D. Wang, Electrochim. Acta 51, 5612 (2006).

    Article  CAS  Google Scholar 

  5. C. Ebner, U. Onthong, and M. Probst, J. Mol. Liq. 118, 15 (2005).

    Article  CAS  Google Scholar 

  6. Y. Kameda, K. Sugawara, T. Hosaka, et al., Bull. Chem. Soc. Jpn. 73, 1105 (2000).

    Article  CAS  Google Scholar 

  7. Y. Aihara, A. Sonai, M. Hattori, and K. Hayamizi, J. Phys. Chem. B 110, 24999 (2006).

    Article  CAS  Google Scholar 

  8. R. Caminitri, P. Cucca, and D. Atzei, J. Phys. Chem. 89, 1457 (1985).

    Article  Google Scholar 

  9. C. M. Lagier, M. Zuriaga, G. Monti, and A. C. Olivieri, J. Phys. Chem. Solids 57, 1183 (1996).

    Article  CAS  Google Scholar 

  10. A. E. Kuramshina, S. A. Bochkor, and V. V. Kuznetsov, Sovrem. Naukoemk. Tekhnol., No. 4, 8 (2006).

  11. A. Jaworski and A. Degorski, Comput. Chem. 19, 189 (1995).

    Article  CAS  Google Scholar 

  12. D. Van der Spoel, A. R. Van Buuren, E. Apol, P. J. Meulenhoff, D. P. Tieleman, A. L. T. M. Sijbers, B. Hess, K. A. Feenstra, E. Lindahl, R. van Drunen, and H. J. C. Berendsen, Gromacs User Manual, Vers. 3.0 (Nijenborh 4, 9747 AG Groningen, 2001) http://www.gromacs.org.

  13. Yu. A. Fadeeva, L. E. Shmukler, and L. P. Safonova, Zh. Obshch. Khim. 74, 197 (2004) [Russ. J. Gen. Chem. 74, 174 (2004)].

    Google Scholar 

  14. E. P. Sokolova and N. A. Smirnova, Intermolecular Interactions. Basic Conceptions (SPb. Univ., St. Petersburg, 2008) [in Russian].

    Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegelc, and G. E. Scuseria, Gaussian 98, Revision A.7 (Gaussian Inc., Pittsburg, PA, 1998).

    Google Scholar 

  16. T. Stefan and R. Janoschek, J. Mol. Model., No. 6, 282 (2000).

  17. K. Range, M. J. McGrath, X. Lopez, and D. M. York, J. Am. Chem. Soc. 126, 1654 (2004).

    Article  CAS  Google Scholar 

  18. N. G. Vassilev and V. S. Dimitriov, J. Mol. Struct. 484, 39 (1999).

    Article  CAS  Google Scholar 

  19. I. V. Fedorova, S. P. Krishtal’, M. G. Kiselev, and L. P. Safonova, Russ. J. Phys. Chem. 80, S7 (2006).

    Article  CAS  Google Scholar 

  20. M. Souhassou, E. Espinosa, C. Lecompte, and R. H. Blessing, J. Acta Cryst. 51, 661 (1995).

    Article  Google Scholar 

  21. R. H. Tromp, S. H. Spieser, and G. W. Neilson, J. Chem. Phys. 110, 2145 (1999).

    Article  CAS  Google Scholar 

  22. G. Schultz and I. Hargittai, J. Phys. Chem. 97, 4966 (1993).

    Article  CAS  Google Scholar 

  23. T. R. Krawietz, P. Lin, K. E. Lotterhos, et al., J. Am. Chem. Soc. 120, 8502 (1998).

    Article  CAS  Google Scholar 

  24. M. M. Ilczyszyn and H. Ratajczak, J. Mol. Struct. 375, 213 (1996).

    Article  CAS  Google Scholar 

  25. M. M. Ilczyszyn, J. Mol. Struct. 611, 119 (2002).

    Article  CAS  Google Scholar 

  26. M. V. Bazilevskii and M. V. Vener, Usp. Khim. 72(1), 3 (2003).

    Google Scholar 

  27. M. Szafran, J. Mol. Struct. 381, 39 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Fedorova.

Additional information

Original Russian Text © I.V. Fedorova, M.G. Kiselev, L.P. Safonova, 2011, published in Zhurnal Fizicheskoi Khimii, 2011, Vol. 85, No. 11, pp. 2057–2062.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorova, I.V., Kiselev, M.G. & Safonova, L.P. Simulating the proton transfer reaction in the phosphoric acid-N,N-dimethylformamide system by means of the AM1 semiempirical method. Russ. J. Phys. Chem. 85, 1917–1922 (2011). https://doi.org/10.1134/S0036024411100049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024411100049

Keywords

Navigation