Skip to main content
Log in

MECHANISM ACID-BASE INTERACTIONS AND STRUCTURES OF COMPLEXES IN 3,5-DIMETHYLPYRAZOLE SOLUTIONS IN METHANESULFONIC AND TRIFLUOROACETIC ACIDS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structural and energy parameters of hydrogen-bonded 3,5-dimethylpyrazole (DMP) complexes in methanesulfonic acid (MSA) and trifluoroacetic acid (TFAA) solutions of 1:1 and 1:2 compositions are determined by IR spectroscopy and quantum chemistry methods. It is found that DMP complexation patterns with strong acids in DMP–MSA and DMP–TFAA systems are practically identical. The key stage of the mechanism of acid-base interactions in them is the proton transfer of the acid molecule (HA) to the nitrogen atom of the base molecule. The А anions contained in the composition of hydrogen-bonded ionic pairs containing N–H+⋯O bridges are formed here. Complexes consisting of two ionic pairs are shown to be present in DMP–MSA and DMP–TFAA 1:1 solutions while the 1:2 solutions contain complexes representing an ionic pair solvated by the acid molecules. Structural features of DMP complexes with strong acids are due to the presence of the proton-donor NH group in the base molecule, which results in the formation of additional N–H⋯O bridges. The conditions are determined under which either only homoconjugated (А⋯Н⋯А) anions with strong quasi-symmetric Н-bonds or only А anions are formed in the solutions, which clarifies and supplements the general scheme of acid-base interactions in the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. N. B. Librovich and I. S. Kislina. Kinet. Catal., 2002, 43(1), 51. https://doi.org/10.1023/A:1014245028270

    Article  CAS  Google Scholar 

  2. S. F. Bureiko and S. Yu. Kucherov. Opt. Spectrosc., 2010, 109(6), 876. https://doi.org/10.1134/S0030400X10120106

    Article  CAS  Google Scholar 

  3. S. F. Bureiko, N. S. Golubev, G. S. Denisov, S. Yu. Kucherov, and P. M. Tolstoi. Russ. J. Gen. Chem., 2005, 75(11), 1821. https://doi.org/10.1007/s11176-005-0518-1

    Article  CAS  Google Scholar 

  4. A. A. Rudnitskaya, V. D. Maiorov, N. B. Librovich, and Yu. Ya. Fialkov. Russ. Chem. Bull., 1981, 30(11), 2478. https://doi.org/10.1007/BF01094626

    Article  Google Scholar 

  5. V. D. Maiorov, S. G. Sysoeva, O. N. Temkin, and I. S. Kislina. Russ. Chem. Bull., 1993, 42(9), 1511. https://doi.org/10.1007/BF00699185

    Article  Google Scholar 

  6. I. S. Kislina, N. B. Librovich, and V. D. Maiorov. Russ. Chem. Bull., 1994, 43(9), 1505. https://doi.org/10.1007/BF00697136

    Article  Google Scholar 

  7. I. S. Kislina, S. G. Sysoeva, N. B. Librovich, O. N. Temkin, I. L. Eremenko, and S. E. Nefedov. Dokl. Chem., 1998, 360(4-6), 106.

  8. E. G. Tarakanova, O. Yu. Tsoi, G. V. Yukhnevich, I. S. Kislina, and N. B. Librovich. Kinet. Catal., 2004, 45(3), 359. https://doi.org/10.1023/B:KICA.0000032169.38973.36

    Article  CAS  Google Scholar 

  9. V. V. Burdin, I. S. Kislina, V. D. Maiorov, S. G. Sysoeva, and N. B. Librovich. Russ. Chem. Bull., 1998, 47(12), 2404. https://doi.org/10.1007/BF02641542

    Article  CAS  Google Scholar 

  10. V. D. Maiorov, I. S. Kislina, and E. G. Tarakanova. Russ. J. Phys. Chem. B, 2017, 11(1), 37. https://doi.org/10.1134/S1990793117010080

    Article  CAS  Google Scholar 

  11. E. S. Stoyanov and Ch. A. Reed. J. Phys. Chem. A, 2006, 110(48), 12992. https://doi.org/10.1021/jp062879w

    Article  CAS  Google Scholar 

  12. J. L. Atwood, S. G. Bott, C. M. Means, A. W. Coleman, H. Zhang, and M. T. May. Inorg. Chem., 1990, 29(3), 467-470. https://doi.org/10.1021/ic00328a025

    Article  CAS  Google Scholar 

  13. Z. Dega-Szafran, A. Gzella, Z. Kosturkiewicz, M. Szafran, and A. Antkowiak. J. Mol. Struct., 2000, 555, 67. https://doi.org/10.1016/S0022-2860(00)00588-3

    Article  CAS  Google Scholar 

  14. G. V. Yukhnevich, E. G. Tarakanova, V. D. Mayorov, and N. B. Librovich. Russ. Chem. Rev., 1995, 64(10), 901. https://doi.org/10.1070/RC1995v064n10ABEH000183

    Article  Google Scholar 

  15. R. Janoschek, A. Hayd, E. G. Weidemann, M. Leuchs, and G. Zundel. J. Chem. Soc., Faraday Trans. 2, 1978, 74, 1238. https://doi.org/10.1039/f29787401238

    Article  CAS  Google Scholar 

  16. A. A. Pankov, V. Yu. Borovkov, and V. B. Kazanskii. Dokl. Akad. Nauk SSSR, 1981, 258, 902. [In Russian]

  17. E. G. Trakanova, G. V. Yukhnevich, I. S. Kislina, and V. D. Maiorov. Phys. Wave Phenom., 2020, 28(2) 168. https://doi.org/10.3103/S1541308X2002017X

    Article  Google Scholar 

  18. V. D. Maiorov, G. I. Voloshenko, I. S. Kislina, and E. G. Tarakanova. Russ. J. Phys. Chem. B, 2020, 14(1), 5. https://doi.org/10.1134/S199079312001008X

    Article  CAS  Google Scholar 

  19. E. G. Tarakanova and G. V. Yukhnevich. Russ. J. Inorg. Chem., 2018, 63(4), 549. https://doi.org/10.1134/S0036023618040216

    Article  CAS  Google Scholar 

  20. E. G. Tarakanova and I. A. Kirilenko. J. Non-Cryst. Solids, 2021, 573, 121130. https://doi.org/10.1016/j.jnoncrysol.2021.121130

    Article  CAS  Google Scholar 

  21. E. G. Tarakanova and I. A. Kirilenko. Russ. J. Inorg. Chem., 2020, 65(10), 1591. https://doi.org/10.1134/S0036023620100204

    Article  CAS  Google Scholar 

  22. N. J. Harrick. Internal Reflection Spectroscopy. New York: J. Wiley Intersci., 1967.

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision A.02. Wallingford, CT: Gaussian, Inc., 2009.

  24. J. M. Orza, M. V. Garcia, I. Alkorta, and J. Elguero. Spectrochim. Acta, Part A, 2000, 56(8), 1469. https://doi.org/10.1016/S1386-1425(99)00268-1

    Article  Google Scholar 

  25. A. P. Kirilova, V. D. Maiorov, A. I. Serebryanskaya, N. B. Librovich, and E. N. Guryanova. Russ. Chem. Bull., 1987, 36(12), 2525. https://doi.org/10.1007/BF00957226

    Article  Google Scholar 

  26. R. L. Redington. Spectrochim. Acta., Part A, 1975, 31(11), 1699. https://doi.org/10.1016/0584-8539(75)80112-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. D. Maiorov or E. G. Tarakanova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 11, 102285.https://doi.org/10.26902/JSC_id102285

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorov, V.D., Tarakanova, E.G. & Kislina, I.S. MECHANISM ACID-BASE INTERACTIONS AND STRUCTURES OF COMPLEXES IN 3,5-DIMETHYLPYRAZOLE SOLUTIONS IN METHANESULFONIC AND TRIFLUOROACETIC ACIDS. J Struct Chem 63, 1894–1903 (2022). https://doi.org/10.1134/S0022476622110208

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622110208

Keywords

Navigation