Skip to main content
Log in

Physicochemical foundations of synthesis of new ferromagnets from chalcopyrites AIIBIVC V2

  • This Issue is Dedicated to the 150th Birth Anniversary of Academician Nikolai Semenovich Kurnakov
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The results of studying phase equilibria of ternary AIIBIVCV systems have been reported. Physicochemical foundations have been developed for the synthesis of new ferromagnets with Curie temperatures above room temperature structurally compatible with basic semiconducting materials. Methods of synthesis and physicochemical properties of manganese-doped AIIBIVC V2 ferromagnets have been described. The results of theoretical simulation of magnetic properties have been considered and basic approaches to the explanation of the emergence of ferromagnetism in AIIBIVC V2 doped with 3d metals have been surveyed. The most promising ways to produce and study dilute magnetic semiconductors as spintronics materials have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Pershin, N. A. Sinitsyn, A. Kogan, et al., Appl. Phys. Lett. 95, 022114 (2009).

    Article  CAS  Google Scholar 

  2. I. Žutić, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  CAS  Google Scholar 

  3. B. Huang, D. J. Monsma, and I. Appelbaum, Phys. Rev. Lett. 99, 177209 (2007).

    Article  CAS  Google Scholar 

  4. V. A. Ivanov, T. G. Aminov, V. M. Novotortsev, and V. T. Kalinnikov, Izv. Akad. Nauk, Ser. Khim., No. 11, 2357 (2004).

  5. A. Fert, Usp. Fiz. Nauk 178(12), 1336 (2008).

    Article  Google Scholar 

  6. A. H. Macdonald, P. Schiffer, and N. Samarth, Nature Mater. 4(3), 195 (2005).

    Article  CAS  Google Scholar 

  7. V. Novak, K. Olejnik, J. Wunderlich, et al., Phys. Rev. Lett. 101, 077201 (2008).

    Article  CAS  Google Scholar 

  8. S. C. Erwin and I. Žutić, Nature Mater. 3(6), 410 (2004).

    Article  CAS  Google Scholar 

  9. Physical and Chemical Properties of Semiconducting Compounds, A Handbook (Nauka, Moscow, 1979) [in Russian].

  10. G. A. Medvedkin, P. G. Baranov, and S. I. Goloshapov, J. Phys. Chem. Sol. 64(9–10), 1691 (2003).

    Article  CAS  Google Scholar 

  11. G. A. Medvedkin, T. Ishibashi, T. Nishi, and K. Sato, Fiz. Tekh. Poluprovodn. (S.-Petersburg) 35(3), 305 (2001) [Semiconductors 35 (3), 291 (2001)].

    Google Scholar 

  12. V. M. Novotortsev, S. F. Marenkin, L. I. Koroleva, et al., Zh. Neorg. Khim. 54(9), 1420 (2009) [Russ. J. Inorg. Chem. 54 (9), 1350 (2009)].

    CAS  Google Scholar 

  13. V. M. Novotortsev, S. F. Marenkin, S. A. Varnavskii, et al., Zh. Neorg. Khim. 53(1), 28 (2008) [Russ. J. Inorg. Chem. 53 (1), 22 (2008)].

    CAS  Google Scholar 

  14. R. V. Demin, L. I. Koroleva, S. F. Marenkin, et al., Pis’ma Zh. Eksp. Teor. Fiz. 30(21), 81 (2004).

    Google Scholar 

  15. J. T. Asubar, Y. Jinbo, and N. Uchitomi N., J. Cryst. Growth. 311, 929 (2009).

    Article  CAS  Google Scholar 

  16. J. A. Aitken, G. M. Tsoi, L. E. Wenger, and S. L. Brock, Chem. Mater. 19, 5272 (2007).

    Article  CAS  Google Scholar 

  17. R. Viennois, T. Taliercioa, V. Potina, et al., Mater. Sci. Eng. B. 82(1–3), 45 (2001).

    Article  Google Scholar 

  18. S. Kikkava and H. Morisaka, Solid State Commun. 112, 513.

  19. S. J. Pearton, M. E. Overberg, C. R. Abernathy, et al., J. Appl. Phys. 92, 2047 (2002).

    Article  CAS  Google Scholar 

  20. I. V. Fedorchenko, T. A. Kupriyanova, S. F. Marenkin, and A. V. Kochura, Zh. Neorg. Khim. 53(7), 1224 (2008) [Russ. J. Inorg. Chem. 53 (7), 1139 (2008)].

    CAS  Google Scholar 

  21. S. F. Marenkin, I. V. Fedorchenko, G. G. Shabunina, and T. A. Kupriyanova, Neorg. Mater. 45(12), 1413 (2009) [Inorg. Mater. 45 (12), 1321 (2009)].

    Article  CAS  Google Scholar 

  22. S. A. Varnavskii, G. G. Shabunina, V. M. Trukhan, et al., Proceedings of FTT-2007 (Minsk), Vol. 2, p. 126 [in Russian].

  23. S. Schon, M. L. Fearheily, K. Diesner, and S. Fiechter, J. Crystal Growth 135, 601 (1994).

    Article  CAS  Google Scholar 

  24. S. F. Marenkin, A. M. Raukhman, A. B. Maimasov, and I. V. Popov, Neorg. Mater. 33(12), 1439 (1997) [Inorg. Mater. 33 (12), 1220 (1997)].

    Google Scholar 

  25. S. F. Marenkin, V. A. Popov, and A. B. Maimasov, Neorg. Mater. 33(4), 394 (1997) [Inorg. Mater. 33 (4), 330 (1997)].

    Google Scholar 

  26. R. Demin, L. Koroleva, S. Marenkin, et al., Phys. Status Solidi C, 1, 3525 (2004).

    Article  CAS  Google Scholar 

  27. L. S. Lobanovskii, V. M. Novotortsev, S. F. Marenkin, et al., Pis’ma Zh. Eksp. Teor. Fiz. 89(7), 391 (2009).

    Google Scholar 

  28. V. M. Novotortsev, V. T. Kalinnikov, L. I. Koroleva, et al., Zh. Neorg. Khim. 50(4), 552 (2005) [Russ. J. Inorg. Chem. 50 (4), 492 (2005)].

    CAS  Google Scholar 

  29. R. Demin, L. Koroleva, S. Marenkin, et al., J. Magn. Magn. Mater. 290–291(2), 1379 (2005).

    Article  CAS  Google Scholar 

  30. P. M. Krstajic, F. M. Peeters, V. A. Ivanov, et al., Phys. Rev. B. 70, 195215 (2004).

    Article  CAS  Google Scholar 

  31. V. G. Storchak, D. G. Eshchenko, H. Luetkens, et al., Physica B. 374–375, 430 (2006).

    Article  CAS  Google Scholar 

  32. A. Yu. Mollaev, R. K. Arslanov, U. Z. Zalibekov, et al., Neorg. Mater. 41(1), 11.

  33. A. Yu. Mollaev, I. K. Kamilov, R. K. Arslanov, et al., Fiz. Tekhn. Vysokikh Davlenii 19(2), 88 (2009).

    CAS  Google Scholar 

  34. A. Yu. Mollaev, I. K. Kamilov, R. K. Arslanov, et al., Neorg. Mater. 45(9), 1035 (2009).

    Article  CAS  Google Scholar 

  35. A. Yu. Mollaev, I. K. Kamilov, R. K. Arslanov, et al., Izv. Akad. Nauk, Ser. Fiz. 19(2), 1048 (2009).

    Google Scholar 

  36. A. Yu. Mollaev, I. K. Kamilov, R. K. Arslanov, et al., Fiz. Tekhn. Vysokikh Davlenii 19(2), 99 (2009).

    CAS  Google Scholar 

  37. L. I. Koroleva, D. M. Zashchirinskii, S. F. Marenkin, et al., Fiz. Tverd. Tela 49(11), 2022 (2007).

    Google Scholar 

  38. V. M. Novotortsev, I. S. Zakharov, A. V. Kochura, et al., Zh. Neorg. Khim. 53(12), 1970 (2008) [Russ. J. Inorg. Chem. 53 (12), 1840 (2008)].

    CAS  Google Scholar 

  39. A. V. Kochura, R. Laiho, A. Lashkil, et al., J. Phys.: Condens. Mater. 20, 335220 (2008).

    Article  CAS  Google Scholar 

  40. L. I. Koroleva, D. M. Zashchirinskii, T. M. Khapaeva, et al., Fiz. Tverd. Tela 51(2), 286 (2009).

    Google Scholar 

  41. S. F. Marenkin, V. M. Novotortsev, I. V. Fedorchenko, et al., Solid State Phenom. 152–153, 311 (2009).

    Article  Google Scholar 

  42. T. Jungwirth, J. Sinova, J. Masek, et al., Rev. Mod. Phys. 78, 809 (2006).

    Article  CAS  Google Scholar 

  43. K. Sato, G. A. Medvedkin, T. Ishibashi, et al., J. Phys. Chem. Solids 64(9–10), 1461 (2003).

    Article  CAS  Google Scholar 

  44. H. Ohno, Science 281(5379), 951 (1998).

    Article  CAS  Google Scholar 

  45. V. A. Ivanov, E. A. Ugolkova, O. N. Pashkova, et al., J. Magn. Magn. Mater. 300(1), e32 (2006).

    Article  CAS  Google Scholar 

  46. A. Kochura, I. Fedorchenko, R. Laiho, et al., Phys. Status Solidi C 6(5), 1336 (2009).

    Article  CAS  Google Scholar 

  47. A. F. Orlov, A. B. Granovskii, L. A. Balagurov, et al., Zh. Eksp. Teoret. Fiz. 136(4), 703 (2009).

    Google Scholar 

  48. J. Červenka, M. I. Katsnelson, C. F. J. Flipse, Nature Phys. 5(11), 840 (2009).

    Article  CAS  Google Scholar 

  49. Y.-J. Zhao, S. Picozzi, A. Continenza, et al., Phys. Rev. B 65, 094415 (2002).

    Article  CAS  Google Scholar 

  50. P. Mahadevan and A. Zunger, Phys. Rev. Lett. 88, 047205 (2002).

    Article  CAS  Google Scholar 

  51. T. Dietl, Acta Physica Polonica A 111(1), 27 (2007).

    CAS  Google Scholar 

  52. H. Katayama-Yoshida, K. Sato, T. Fukushima, et al., J. Magn. Magn. Mater. 310, 2070 (2007).

    Article  CAS  Google Scholar 

  53. L. Kilanski, M. Gorska, V. Domukhovski, et al., Acta Phys. Polon. A 114, 1151 (2007).

    Google Scholar 

  54. A. Kwiatkowski, D. Wasik, M. Kaminska, et al., J. Appl. Phys. 101, 113912 (2007).

    Article  CAS  Google Scholar 

  55. L. Pytlik and A. Zieba, J. Magn. Magn. Mater. 51, 199 (1985).

    Article  CAS  Google Scholar 

  56. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1959).

    Article  CAS  Google Scholar 

  57. R. Laiho, K. G. Lisunov, E. Lahderanta, V. S. Zakhvalinskii, J. Phys.: Condens. Matte, 555 (1999).

  58. K. Y. Wang, M. Sawicki, K. W. Edmonds, et al., Appl. Phys. Lett. 88, 022510 (2006).

    Article  CAS  Google Scholar 

  59. C. Michel, M. T. Elm, B. Goldlucke, et al., Appl. Phys. Lett. 92, 223119 (2008).

    Article  CAS  Google Scholar 

  60. K. Lawniczak-Jablonska, A. Wolska A., and J. Bak-Misiuk, J. Appl. Phys. 106, 083524 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Marenkin.

Additional information

Original Russian Text © V.M. Novotortsev, S.F. Marenkin, I.V. Fedorchenko, A.V. Kochura, 2010, published in Zhurnal Neorganicheskoi Khimii, 2010, Vol. 55, No. 11, pp. 1868–1880.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novotortsev, V.M., Marenkin, S.F., Fedorchenko, I.V. et al. Physicochemical foundations of synthesis of new ferromagnets from chalcopyrites AIIBIVC V2 . Russ. J. Inorg. Chem. 55, 1762–1773 (2010). https://doi.org/10.1134/S0036023610110136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023610110136

Keywords

Navigation