Skip to main content
Log in

Application of in-situ electrical resistance measurements to the study of phase transformations in ferrous alloys

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Phase transformations have been studied in a variety of different steels with the use of “in situ” electrical resistance measurements. The results were evaluated by metallography of the initial and final microstructures and with consideration of data from the published literature. On this basis a good correlation has been established and it was shown that this method is suitable for such investigations. It even presents certain advantages, thus providing a more complete understanding of the physical metallurgy of steels. We out-lined the field in which the measurement of electrical resistance is particularly suitable and an example of processes that are difficult to monitor using other commonly used methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Garcia de Andres and F. G. Caballero, “Application of dilatometric analysis to the study of solid–solid phase transformations in steels,” Mater. Charact. 48, 101–111 (2002).

    Article  Google Scholar 

  2. G. P. Krielaart, C. M. Brakman, and S. Van Der Zwaag, “Analysis of phase transformation in Fe–C alloys using differential scanning calorimetry,” J. Mater. Sci. 31, 1501–1508 (1996). doi 10.1007/BF00357859

    Article  Google Scholar 

  3. P. L. Rossiter, The Electrical Resistivity of Metals and Alloys (Cambridge Univ., Cambridge, 1987). http://dx.org/10.1017/CBO9780511600289.

    Book  Google Scholar 

  4. R. H. Pry and R. W. Hennig, “On the use of electrical resistivity as a measure of plastic deformation in copper,” Acta Metall. 2, 318–321 (1954). doi 10.1016/0001-6160(54)90174-1

    Article  Google Scholar 

  5. F. Sevini, B. Acosta, and L. Debarberis, “Combined thermoelectric power and resistivity measurements of embrittlement recovery in aged JRQ ferritic steel,” Int. J. Press. Vessels Pip. 83, 525–530 (2006). doi 10.1016/j.ijpvp.2006.03.006

    Article  Google Scholar 

  6. A. N. Bhagat, S. K. Pabi, S. Ranganathan, and O. N. Mohanty, “Study on copper precipitation during continuous heating and cooling of HSLA steels using electrical resistivity,” Mater. Sci. Technol. 23, 158–184 (2007). doi 10.1179/174328407X157218

    Article  Google Scholar 

  7. D. S. K. Binder, “Behavior of the electrical resistivity at phase transitions in binary alloys,” Z. Phys. B 24, 407–415 (1976).

    Article  Google Scholar 

  8. O. N. Mohanty and A. N. Bhagat, “Electrical resistivity and phase transformation in steels,” Materwiss. Werksttech. 34, 96–101 (2003). doi 10.1002/mawe.200390024

    Article  Google Scholar 

  9. M. Bruncko, A. C. Kneissl, and I. Anzel, “In situ monitoring of vacuum carburizing,” Mater. Manuf. Process 24, 809–813 (2009).: doi 10.1080/10426910902841076

    Article  Google Scholar 

  10. G. F. Vander Voort, Metallography: Principles and Practice (McGraw-Hill, New York, 1984). doi 10.1016/0026-0800(85)90051-5

    Google Scholar 

  11. M. Strangwood, “Fundamentals of ferrite formation in steels,” in Phase Transformatons in Steels, Ed. by E. Pereloma and D. V. Edmonds (Woodhead, Cambridge, UK, 2012), pp. 187–224. doi 10.1533/9780857096104.2.187

    Chapter  Google Scholar 

  12. B. Pawlowski, “Dilatometric examination of continuously heated austenite formation in hypoeutectoid steels,” J. Achiev. Mater. Manuf. Eng. 54, 185–193 (2012).

    Google Scholar 

  13. F. L. G. Oliveira, M. S. Andrade, and A. B. Cota, “Kinetics of austenite formation during continuous heating in a low carbon steel,” Mater. Charact. 58, 256–261 (2007). doi 10.1016/j.matchar.2006.04.027

    Article  Google Scholar 

  14. T. G. Digges and S. J. Rosenberg, “Metallographic study of the formation of austenite from aggregates of ferrite and cementite in an iron–carbon alloy of 0.5 percent carbon,” Natl. Bur. Stand. 29, 113–121 (1942).

    Article  Google Scholar 

  15. O. G. Kasatkin, B. B. Vinokur, and V. L. Pilyushenko, “Calculation models for determining the critical points of steel,” Met. Sci. Heat Treat. 26, 27–31 (1984). doi 10.1007/BF00712859

    Article  Google Scholar 

  16. K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, and T. Takahashi, “Cementite decomposition in heavily drawn pearlite steel wire,” Scr. Mater. 44, 977–983 (2001). doi 10.1016/S1359-6462(00)00690-4

    Article  Google Scholar 

  17. G. Krauss, Tempering of Martensite in Carbon Steels (Woodhead, Cambridge, UK, 2012). doi 10.1533/9780857096111.1.126

    Book  Google Scholar 

  18. A. J. S. T. da Silva, H. Goldenstein, W. L. Guesser, and M. F. de Campos, “Quenching and Partitioning Heat Treatment in Ductile Cast Irons,” Mater. Res. 17, 1115–1123 (2014).

    Article  Google Scholar 

  19. M. M. Gasik, Handbook of Ferroalloys: Theory and Technology (Butterworth–Heinemann, Oxford, UK, 2013).

    Google Scholar 

  20. F. G. Caballero, M. K. Miller, S. S. Babu, and C. Garcia-Mateo, “Atomic scale observations of bainite transformation in a high carbon high silicon steel,” Acta Mater. 55, 381–390 (2007). doi 10.1016/j.actamat.2006.08.033

    Article  Google Scholar 

  21. J. G. Speer, D. V. Edmonds, F. C. Rizzo, and D. K. Matlock, “Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation,” Curr. Opin. Solid State Mater. Sci. 8, 219–237 (2004). doi 10.1016/j.cossms.2004.09.003

    Article  Google Scholar 

  22. E. Kozeschnik and H. K. D. H. Bhadeshia, “Influence of silicon on cementite precipitation in steels,” Mater. Sci. Technol. 24, 343–347 (2008). doi 10.1179/174328408X275973

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kirbiš.

Additional information

Published in Russian in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 11, pp. 1130–1139.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirbiš, P., Anžel, I. & Brunčko, M. Application of in-situ electrical resistance measurements to the study of phase transformations in ferrous alloys. Phys. Metals Metallogr. 117, 1092–1100 (2016). https://doi.org/10.1134/S0031918X16110107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16110107

Keywords

Navigation