Skip to main content
Log in

Complexation of nanoscale enzyme inhibitor with carbonic anhydrase active center: A quantum mechanical approach

  • Self-Organization in Molecular and Supramolecular Compounds
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The complex between carbonic anhydrase enzyme center (CA) and a derivative of fullerene as a nanoscale inhibitor (C60-Inh) has been investigated, based on, B3LYP level, using 6-31G* basis set. The results of calculations indicate that this special fullerene derivative could be deprotonated from three different positions and interacts with CA active site to form three CA-C60-Inh complexes. The calculated results indicate that deprotonated inhibitor is coordinated to the Zn2+ ion and all the complexes have tetrahedral geometry. The calculated binding energy (BD) and complexation energy clearly show the complex between C60-Inh and CA active site from N13 position is more favorable than the other position. Also thermodynamic functions such as standard enthalpy of complexation (ΔH 0com ), standard entropy of complexation (ΔS 0com ) and standard Gibbs free energy of complexation (ΔG 0com ) for three CA-inhibitor complexes are evaluated. In order to approach the ideal geometry and provide further insight into the different complexation properties, the single point calculation at the B3LYP/6-311G** level have been used for all three different complexes to confirm the results of B3LYP/6-31G*. Thus, fullerene derivatives show a new class of nano scale carbonic anhydrase inhibitors that might find applications for targeting physiologically relevant isoforms of different forms of CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Parkkila, A. K. Parkkila, and J. Kivela, in: Carbonic Anhydrase: Its Inhibitors and Activators, Eds. C. T. Supuran, A. Scozzafava and J. Conway, CRC Press: Boca Raton (2004), p. 283–301

  2. K. Kaila and B. Ransom, PH and Brain Function, Wiley-Liss, New-York (1998).

    Google Scholar 

  3. P. Halmi, S. Parkkila, and J. Honkaniemi, Neurochem. Int., 48, 24–30 (2006).

    Article  CAS  Google Scholar 

  4. J. F. Domsic, B. S. Avvaru, C. U. Kim, et al., J. Biol. Chem., 283, 30766–30771 (2008).

    Article  CAS  Google Scholar 

  5. J. F. Ferry, Biochim. Biophys. Acta, 1804, 374–381 (2010)

    Article  CAS  Google Scholar 

  6. K. S. Smith, C. Jakubzick, T. S. Whittam, et al., Proc. Natl. Acad. Sci., U.S.A. (1999), 96, 5184–15189

    Google Scholar 

  7. S. A. Zimmerman, J. F. Tomb, and J. G. Ferry, J. Bacteriol., 192, 1353–1360 (2010)

    Article  CAS  Google Scholar 

  8. S. A. Zimmerman, J. G. Ferry, and C. T. Supuran, Curr. Top. Med. Chem., 7, 901–908 (2007)

    Article  CAS  Google Scholar 

  9. S. Elleuche and S. Pöggeler, Microbiology., 156, 23–29 (2010).

    Article  CAS  Google Scholar 

  10. S. Lindskog, Pharmacol. Ther., 74, 1–20 (1997).

    Article  CAS  Google Scholar 

  11. D. N. Silverman and S. Lindskog, Acc. Chem. Res., 21, 30–36 (1988).

    Article  CAS  Google Scholar 

  12. A. Liljas, K. K. Kannan, P. C. Bergsten, et al., Nature, 235, 131–137 (1972).

    CAS  Google Scholar 

  13. S. K. Nair and D. W. Christianson, J. Am. Chem. Soc., 113, 9455–9458 (1991).

    Article  CAS  Google Scholar 

  14. Z. Fisher, J. A. Hernandez Prada, C. Tu, et al., Biochemistry, 44, 1097–1105 (2005).

    Article  CAS  Google Scholar 

  15. H. Steiner, B. H. Jonsson, and S. J. Lindskog, Eur. J. Biochem., 59, 253–259 (1975).

    Article  CAS  Google Scholar 

  16. C. Tu, D. N. Silverman, C. Forsman, et al., Biochemistry, 28, 7913–7918 (1989).

    Article  CAS  Google Scholar 

  17. D. Duda, C. Tu, M. Qian, et al., Biochemistry, 40, 1741–1748 (2001).

    Article  CAS  Google Scholar 

  18. C. T. Supuran and A. Scozzafava, Bioorg. Med. Chem., 15, 4336–4350 (2007).

    Article  CAS  Google Scholar 

  19. S. Pastorekova, S. Parkkila, J. Pastorek, et al., J. Enzyme Inhib. Med. Chem., 19, 199–229 (2004).

    Article  CAS  Google Scholar 

  20. C. T. Supuran, Nat. Rev. Drug Disc., 7, 168–181 (2008).

    Article  CAS  Google Scholar 

  21. C. T. Supuran, Carbonic Anhydrases as Drug Targets-General Presentation. In: Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications (C. T. Supuran., J. Y. Winum Eds.), Wiley: Hoboken (NJ) (2009), p. 15–38

    Chapter  Google Scholar 

  22. J. Y. Winum, M. Rami, A. Scozzafava, et al., Med. Res. Rev., 28, 445–463 (2008)

    Article  CAS  Google Scholar 

  23. C. T. Supuran, A. Scozzafava, and A. Casini, Med. Res. Rev., 23, 146–189 (2003)

    Article  CAS  Google Scholar 

  24. J. F. Domsic, B. S. Avvaru, C. U. Kim, et al., J. Biol. Chem., 283, 30766–30771 (2008).

    Article  CAS  Google Scholar 

  25. C. T. Supuran, Curr. Pharm. Des., 14, 641–648 (2008)

    Article  CAS  Google Scholar 

  26. C. T. Supuran, A. Di Fiore, and G. De Simone, Expert Opin. Emerg. Drugs., 13, 383–392 (2008)

    Article  CAS  Google Scholar 

  27. G. De Simone, A. Di Fiore, and C. T. Supuran, Curr. Pharm. Des., 14, 655–660 (2008)

    Article  Google Scholar 

  28. F. Mincione, A. Scozzafava, and C. T. Supuran, Antiglaucoma Carbonic Anhydrase Inhibitors as Ophthalmologic Drugs. In: Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease Applications (C. T. Supuran and J. Y. Winum Eds.), Wiley: Hoboken (NJ) (2009), p. 139–154

  29. J. Krungkrai and C. T. Supuran, Curr. Pharm. Des., 14, 631–640 (2008)

    Article  CAS  Google Scholar 

  30. J. Borras, A. Scozzafava, L. Menabuoni, et al., Bioorg. Med. Chem., 7, 2397–2406 (1999).

    Article  CAS  Google Scholar 

  31. I. Nishimori, S. Onishi, H. Takeuchi, et al., Curr. Pharm. Des., 14, 622–630 (2008)

    Article  CAS  Google Scholar 

  32. C. Schlicker, R. A. Hall, D. Vullo, et al., J. Mol. Biol., 385, 1207–1220 (2009)

    Article  CAS  Google Scholar 

  33. S. Isik, F. Kockar, M. Aydin, et al., Bioorg. Med. Chem., 17, 1158–1163 (2009)

    Article  CAS  Google Scholar 

  34. F. Carta, A. Maresca, A. Suarez Covarrubias, et al., Bioorg. Med. Chem. Lett., 19, 6649–6654 (2009).

    Article  CAS  Google Scholar 

  35. B. W. Clare and C. T. Supuran, J. Pharm. Sci., 83, 768–773 (1994)

    Article  CAS  Google Scholar 

  36. C. Temperini, D. Vullo, A. Scozzafava, et al., J. Med. Chem., 49, 3019–3027 (2006).

    Article  CAS  Google Scholar 

  37. A. V. Luzanov, J. Struct. Chem., 43, 1–9 (2002).

    Article  CAS  Google Scholar 

  38. V. N. Ivanova, J. Struct. Chem., 41, 135–148 (2000).

    Article  CAS  Google Scholar 

  39. Y. Tabata and Y. Ikada, Pure Appl. Chem., 71, 2047–2053 (1999).

    Article  CAS  Google Scholar 

  40. S. H. Friedman, D. L. De Camp, R. P. Sijbesma, et al., J. Am. Chem. Soc., 115, 6506–6509 (1993).

    Article  CAS  Google Scholar 

  41. H. Tokuyama, S. Yamago, E. Nakamura, et al., J. Am. Chem. Soc., 5, 7918/7919 (1993).

    Google Scholar 

  42. I. Wang, I. L. Tai, D. Lee, et al., J. Med. Chem., 42, 4614–4620 (1999).

    Article  CAS  Google Scholar 

  43. S. T. Yang, H. F. Wang, L. Guo, et al., Nanotechnology, 19, 395101–395108 (2008).

    Article  Google Scholar 

  44. A. Innocenti, S. Durdagi, N. Doostdar, et al., Bioorg. Med. Chem., 18, 2822–2828 (2010).

    Article  CAS  Google Scholar 

  45. S. R. Wilson, D. I. Schuster, B. Nuber, et al., Fullerenes: Chemistry, Physics, and Technology (K. Kadish and R. Ruoff Eds.), John Wiley & Sons, New-York (2000).

  46. W. Kratschmer, L. D. Lamb, and D. R. Hoffman, Nature, 347, 354–358 (1990).

    Article  Google Scholar 

  47. S. Yamago, H. Tokuyama, E. Nakamura, et al., Chem. Biol., 2, 385–389 (1995).

    Article  CAS  Google Scholar 

  48. C. T. Supuran, Bioorg. Med. Chem. Lett., 20, 3467–3474 (2010).

    Article  CAS  Google Scholar 

  49. S. Bosi, T. Da Ros, G. Spalluto, et al., Eur. J. Med. Chem., 38, 913–923 (2003)

    Article  CAS  Google Scholar 

  50. D. Pantarotto, N. Tagmatarchis, A. Bianco, et al., Mini-Rev. Med. Chem., 4, 805–814 (2004)

    CAS  Google Scholar 

  51. L. Sanchez, R. Otero, J. M. Gallego, et al., Chem. Rev., 109, 2081–2091 (2009).

    Article  CAS  Google Scholar 

  52. B. Kang, D. Yu, Y. Dai, et al., Small., 5, 1292–1301 (2009)

    Article  CAS  Google Scholar 

  53. P. Chaudhuri, A. Paraskar, S. Soni, et al., ACS. Nano., 3, 2505–2014 (2009)

    Article  CAS  Google Scholar 

  54. P. Mroz, G. P. Tegos, H. Gali, et al., Photochem. Photobiol. Sci., 6, 1139–1149 (2007).

    Article  CAS  Google Scholar 

  55. K. Yudoh, R. Karasawa, K. Masuko, et al., Int. J. Nanomed., 4, 217–225 (2009)

    Article  CAS  Google Scholar 

  56. R. Partha and J. L. Conyers, Int. J. Nanomed., 4, 261–275 (2009)

    Article  CAS  Google Scholar 

  57. K. Yudoh, K. Shishido, H. Murayama, et al., Arthritis Rheum., 56, 3307–3318 (2007).

    Article  CAS  Google Scholar 

  58. J. Yang and A. R. Barron, Chem. Commun., 21, 2884/2885 (2004)

    Google Scholar 

  59. J. Yang, L. B. Alemany, and J. Driver, Chem. Eur. J., 13, 2530–2545 (2007)

    Article  CAS  Google Scholar 

  60. J. Yang, K. Wang, J. Driver, et al., Org. Biomol. Chem., 5, 260–266 (2007).

    Article  CAS  Google Scholar 

  61. M. Ghiasi, S. Kamalinahad, M. Arabieh, and M. Zahedi, Comput. Theo. Chem., 992, 59–69 (2012).

    Article  CAS  Google Scholar 

  62. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 2003 (Revision-B), Gaussian, Inc., Pittsburgh PA (2003).

    Google Scholar 

  63. A. D. Beck, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  Google Scholar 

  64. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules, Oxford Univ. Press (1989).

    Google Scholar 

  65. D. J. Barbiric, E. A. Castro, and R. H. de Rossi, J. Mol. Struct: Theochem., 532, 171–181 (2000).

    Article  CAS  Google Scholar 

  66. M. Navarrete, C. J. C. Rangel, and J. Corchado, J. Phys. Chem. A, 109, 4777–4784 (2005).

    Article  CAS  Google Scholar 

  67. A. K. Chandra and T. Uchimaru, Int. J. Mol. Sci., 3, 407–422 (2002).

    Article  CAS  Google Scholar 

  68. H. Y. Zhang and H. F. Ji, J. Mol. Struct: Theochem., 663, 167–174 (2003).

    Article  CAS  Google Scholar 

  69. M. Ghiasi, M. Taheri, and M. Zahedi, Comp. Theo. Chem., 1022, 121–129 (2013).

    Article  CAS  Google Scholar 

  70. A. Casini, J. Antel, F. Abbate, et al., Bioorg. Med. Chem. Lett., 13, 841–845 (2003).

    Article  CAS  Google Scholar 

  71. M. Bialer, S. I. Johannessen, H. J. Kupferberg, R. H. Levey, P. Loiseau, and E. Perucca, Epilepsy Res., 43, 11–58 (2001).

    Article  CAS  Google Scholar 

  72. J. L. Stringer, Epilepsy Res., 40, 147–153 (2000).

    Article  CAS  Google Scholar 

  73. A. Sabers and L. Gram, Drugs., 60, 23–33 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghiasi.

Additional information

Original Russian Text © 2014 M. Ghiasi, S. Kamalinahad, M. Zahedi.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 55, Supplement 2, pp. S392–S403, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, M., Kamalinahad, S. & Zahedi, M. Complexation of nanoscale enzyme inhibitor with carbonic anhydrase active center: A quantum mechanical approach. J Struct Chem 55, 1574–1586 (2014). https://doi.org/10.1134/S0022476614080277

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614080277

Keywords

Navigation