Skip to main content
Log in

Formation of hollow micro- and nanostructures of zirconia by laser ablation of metal in liquid

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

Nanosized zirconia particles were generated by the laser ablation of metal in water and aqueous solutions of sodium dodecyl sulfate (SDS); the structure and morphology of the material were studied by X-ray diffractometry, Raman scattering spectroscopy, and scanning electron microscopy. The cubic, tetragonal, and monoclinic phases of zirconia and an organic-inorganic nanocomposite of Zr-SDS are found in the ablation product upon exposure of zirconium to powerful nanosecond laser pulses with a high repetition rate. Morphologically, the synthesized dioxide is present mainly in the amorphous state. Depending on the experimental conditions, the crystallized part of the dioxide consists of aggregates of rounded dense particles and hollow formations, whole or partially collapsed, close to spherical in shape. It is assumed that vapor-gas bubbles generated during ablation serve as templates for hollow micro- and nanoscale structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shukla, S., Seal, S., and Vanfleet, R., J. Sol-Gel Sci. Technol., 2003, vol. 27, no. 2, p. 119.

    Article  Google Scholar 

  2. Salavati-Niasarim, M., Dadkhah, M., and Davar, F., Inorg. Chim. Acta, 2009, vol. 362, p. 3969.

    Article  Google Scholar 

  3. Feng, X., Bai, Y.J., Lu, B., Zhao, Y.R., Yang, J., and Chi, J.R., J. Cryst. Growth, 2004, vol. 262, p. 420.

    Article  ADS  Google Scholar 

  4. Ray, J.C., Pramanik, P., and Ram, S., Mater. Lett., 2001, vol. 48, no. 5, p. 281.

    Article  Google Scholar 

  5. Sliem, M.A., Schmidt, D.A., Bétard, A., Kalidindi, S.B., Gross, S., Havenith-Newen, M., Devi, A., and Fischer, R.A., Chem. Mater., 2012, vol. 24, p. 4274.

    Article  Google Scholar 

  6. Tok, A.I.Y., Boey, F.Y.C., Du, S.W., and Wong, B.K., Mater. Sci. Eng., B., 2006, vol. 130, p. 114.

    Article  Google Scholar 

  7. Meskin, P.E., Ivanov, V.K., Barantchikov, A.E., Churagulov, B.R., and Tretyakov, Yu.D., Ultrason. Sonochem., 2006, vol. 13, p. 47.

    Article  Google Scholar 

  8. Chen, L., Mashimo, T., Omurzak, E., Okudera, H., Iwamoto, Ch., and Yoshiasa, A., J. Phys. Chem. C, 2011, vol. 115, p. 9370.

    Article  Google Scholar 

  9. Cao, G., Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, London: Imperial College Press, 2004, p. 433.

    Book  Google Scholar 

  10. Botta, S.G., Navio, J.A., Hidalgo, M.C., Restrepo, G.M., and Litter, M.I., J. Photochem. Photobiol., A, 1999, vol. 129, p. 89.

    Article  Google Scholar 

  11. Subbarao, E.C. and Maiti, H.S., Adv. Ceram., 1988, vol. 24, p. 731.

    Google Scholar 

  12. Latha Kumari, Du, G.H., Li, W.Z., Selva Vennila, R., Saxena, S.K., and Wang, D.Z., Ceram. Int., 2009, vol. 35, no. 6, p. 2401.

    Article  Google Scholar 

  13. Varaksin, A.Yu., Protasov, M.V., and Teplitskii, Yu.S., High Temp., 2014, vol. 52, no. 4, p. 554.

    Article  Google Scholar 

  14. Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 377.

    Article  Google Scholar 

  15. Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, 752.

    Article  Google Scholar 

  16. Kumar, B. and Thareja, R.K., J. Appl. Phys., 2010, vol. 108, p. 064906.

    Article  ADS  Google Scholar 

  17. Stratakis, E., Zorba, V., Barberoglou, M., Fotakis, C., and Shafeev, G.A., Appl. Surf. Sci., 2009, vol. 255, p. 5346.

    Article  ADS  Google Scholar 

  18. Liu, P., Cai, W., Fang, M., Li, Zh., Zeng, H., Hu, J., Luo, X., and Jing, W., Nanotecnology, 2009, vol. 20, p. 285707.

    Article  ADS  Google Scholar 

  19. Dezhi Tan, Geng Lin, Yin Liu, Yu Teng, Yixi Zhuang, Bin Zhu, Quanzhong Zhao, and Jianrong Qiu, J. Nanopart. Res., 2011, vol. 13, p. 1183.

    Article  Google Scholar 

  20. Dezhi Tan, Yu Teng, Yin Liu, Yixi Zhuang, and Jianrong Qiu, Chem. Lett., 2009, vol. 38, p. 1102.

    Article  Google Scholar 

  21. Mahmoud, A.K., Fadhill, Z., Ibrahim Al-nassar, S., Ibrahim Husein, F., Akman, E., and Demir, A., J. Mater. Sci. Eng., B, 2013, vol. 6, p. 364.

    Google Scholar 

  22. Chao-Hsien Wu, Chang-Ning Huang, Pouyan Shen, and Shuei-Yuan Chen, J. Nanopart. Res., 2011, vol. 13, p. 6633.

    Article  Google Scholar 

  23. Golightly, J.S. and Castleman, A.W., Z. Phys. Chem., 2010, vol. 221, p. 1455.

    Article  Google Scholar 

  24. Simakin, A.V., Voronov, V.V., and Shafeev, G.A., Phys. Wave Phenom., 2007, vol. 15, p. 218.

    Article  ADS  Google Scholar 

  25. Bozon-Verdyura, F., Brainer, R., Voronov, V.V., Kirichenko, N.A., Simakin, A.V., and Shafeev, G.A., Kvantovaya Elektron. (Moscow), 2003, vol. 33, p. 714.

    Article  Google Scholar 

  26. Yang, G.W., Prog. Mater. Sci., 2007, vol. 52, p. 648.

    Article  Google Scholar 

  27. Karpukhin, V.T., Malikov, M.M., Borodina, T.I., Val’yano, G.E., and Gololobova, O.A., High Temp., 2011, vol. 49, no. 5, p. 679.

    Article  Google Scholar 

  28. Batenin, V.M., Bokhan, P.A., Buchanov, V.V., Evtushenko, G.S., Kazaryan, M.A., Karpukhin, V.T., Klimovskii, I.I., and Malikov, M.M., Lazery na samoogranichennykh perekhodakh atomov metallov (Lasers on Self-Terminating Transitions of Metal Atoms), Moscow: Fizmatlit, 2011, vol. 2.

    Google Scholar 

  29. Pesika, N.S., Hu, Z., Stebe, K.J., and Searson, P.C., J. Phys. Chem. B, 2002, vol. 106, p. 6985.

    Article  Google Scholar 

  30. Kandare, E., Chigwada, G., Wang, D., Wilkie, C.A., and Hossenlopp, J.M., Polym. Degrad. Stab., 2006, vol. 91, p. 1781.

    Article  Google Scholar 

  31. Stefanic, G. and Music, S., Croat. Chem. Acta, 2002, vol. 75, p. 727.

    Google Scholar 

  32. Karpukhin, V.T., Malikov, M.M., Borodina, T.I., Val’yano, G.E., Gololobova, O.A, and Strikanov, D.A., Kvantovaya Elektron. (Moscow), 2013, vol. 43, p. 563.

    Article  Google Scholar 

  33. Karpukhin, V.T., Malikov, M.M., Val’yano, G.E., Borodina, T.I., and Gololobova, O.A., J. Nanotechnol., 2012, ID 910761. doi 10.1155/2012/910761

    Google Scholar 

  34. Liang, C., Shimizu, Y., Masuda, M., Sasaki, T., and Koshizaki, N., Chem. Mater., 2004, vol. 16, p. 963.

    Article  Google Scholar 

  35. Newman, S.P. and Jones, W., New J. Chem., 1998, vol. 22, p. 105.

    Article  Google Scholar 

  36. Nalawade, P., Aware, B., Kadam, V.J., and Hirlekar, R.S., J. Sci. Ind. Res., 2009, vol. 68, p. 267.

    Google Scholar 

  37. Meyn, M., Beneke, K., and Lagaly, G., Inorg. Chem., 1993, vol. 32, p. 1209.

    Article  Google Scholar 

  38. Yan, Z., Bao, R., Wright, R.N., and Chrisey, D.B., Appl. Phys. Lett., 2010, vol. 97, p. 124106.

    Article  ADS  Google Scholar 

  39. Yan, Z., Bao, R., Huang, Y., Caruso, A.N., Qadri, S.B., Dinu, C.Z., and Chrisey, D.B., J. Phys. Chem. C, 2010, vol. 114, p. 3869.

    Article  Google Scholar 

  40. Yan, Z., Bao, R., Huang, Y., and Chrisey, D.B., J. Phys. Chem. C, 2010, vol. 114, p. 11370.

    Article  Google Scholar 

  41. Yan, Z., Bao, R., and Chrisey, D.B., Nanotecnology, 2010, vol. 21, p. 145609.

    Article  ADS  Google Scholar 

  42. Lim, K.Y., Quinto-Su, P.A., Klaseboer, E.A., Khoo, B.C., Venugopalan, V.C., and Ohl, C., Phys. Rev. E, 2010, vol. 81, p. 016308.

    Article  ADS  Google Scholar 

  43. Yavas, O., Leiderer, P., Park, H.K., Grigoropoulos, C.P., Poon, C.C., Leung, W.P., Do, N., and Tam, A.C., Phys. Rev. Lett., 1993, vol. 70, p. 1830.

    Article  ADS  Google Scholar 

  44. Ohl, C.D., Lindau, O., and Lauterborn, W., Phys. Rev. Lett., 1998, vol. 80, p. 393.

    Article  ADS  Google Scholar 

  45. Brenner, M., Rev. Mod. Phys., 2002, vol. 74, p. 425.

    Article  ADS  Google Scholar 

  46. Li, X., Shimizu, Y., Pyatenko, A., Wang, H., and Koshizaki, N., Nanotecnology, 2012, vol. 23, p. 115602.

    Article  ADS  Google Scholar 

  47. Takeda, S., Ikuta, Y., Hirano, M., and Hosono, H., J. Mater. Res., 2001, vol. 16, p. 1003.

    Article  ADS  Google Scholar 

  48. Pyatenko, A., Yamaguchi, M., and Suzuki, M., J. Phys. Chem. C, 2007, vol. 111, p. 7910.

    Article  Google Scholar 

  49. Binks, B.P., Curr. Opin. Colloid Interface Sci., 2002, vol. 7, p. 21.

    Article  Google Scholar 

  50. Ostwald, W., Lehrbuch der allgemeinen Chemie, Leipzig: W. Engelmann, 1896, vol. 2, p. 1163.

    Google Scholar 

  51. Ratke, L. and Voorhees, P.W., Growth and Coarsening: Ostwald Ripening in Material Processing, Berlin: Springer-Verlag, 2002.

    Book  Google Scholar 

  52. Orrù, R., Licheri, R., Locci, A.M., Cincotti, A., and Cao, G., Mater. Sci. Eng., R, 2009, vol. 63, p. 127.

    Article  Google Scholar 

  53. Kang, S.-J.L., Sintering: Densification, Grain Growth, and Microstructure, Oxford: Elsevier, 2005.

    Google Scholar 

  54. Smigelskas, A.D. and Kirkendall, E.O., Trans. AIME, 1947, vol. 171, p. 130.

    Google Scholar 

  55. Niu, K.Y., Park, J., Zheng, H., and Alivisatos, A.P., Nano Lett., 2013, vol. 13, p. 5715.

    Article  ADS  Google Scholar 

  56. Niu, K.Y., Yang, J., Kulinich, S.A., Sun, J., and Du, X.W., Langmuir, 2010, vol. 26, p. 16652.

    Article  Google Scholar 

  57. Yang, J., Hou, J., and Du, X., School Mater. Sci. Eng., Tianjin Univ., 2013, p. 300072.

    Google Scholar 

  58. Zhou, J., Wu, W., Caruntu, D., Yu, M.H., Martin, A., Chen, J.F., O’Connor, C.J., and Zhou, W.L., J. Phys. Chem. C, 2007, vol. 111, p. 17473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Malikov.

Additional information

Original Russian Text © V.T. Karpukhin, M.M. Malikov, T.I. Borodina, G.E. Val’yano, O.A. Gololobova, D.A. Strikanov, 2015, published in Teplofizika Vysokikh Temperatur, 2015, Vol. 53, No. 1, pp. 98–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpukhin, V.T., Malikov, M.M., Borodina, T.I. et al. Formation of hollow micro- and nanostructures of zirconia by laser ablation of metal in liquid. High Temp 53, 93–98 (2015). https://doi.org/10.1134/S0018151X15010101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15010101

Keywords

Navigation