Skip to main content
Log in

Surface modification, martensitic transformation, and optical properties of hydrogenated ZrO2 nanocondensates via pulsed laser ablation in water

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Pulsed laser ablation on Zr plate in water under Q-switch mode and a fluence of 700 and 800 mJ/pulse for a rather high power density of 1.5 and 1.7 × 1011 W/cm2, respectively, was employed to fabricate hydrogenated ZrO2 nanocondensates. X-ray diffraction and transmission electron microscopic observations indicated such nanocondensates are full of {111} and {100} facets and predominantly in monoclinic (m-) rather than cubic- and/or tetragonal (t-) crystal symmetry in particular when fabricated at 700 mJ/pulse. The hydrogenated ZrO2 nanocondensates underwent martensitic t → m transformation at a rather small critical size (ca. 20 nm) due to H+ signature and hence oxygen vacancy deficiency in the lattice. The resultant m-phase was free of twin and fault due to site saturation and rather limited growth of the nanosized particles. Spectroscopic characterizations indicated that the nanocondensates have a significant internal compressive stress, (H+, Zr2+, Zr3+) co-signature and hence a smaller band gap of 5.2–5.3 eV for potential applications in UV region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Berthe L, Fabbro R, Peyre L, Tollier L, Bartnicki E (1997) Shock waves from a water-confined laser-generated plasma. J Appl Phys 82:2826–2832

    Article  CAS  Google Scholar 

  • Bolis V, Magnacca G, Cerrato G, Morterra C (2001) Microcalorimetric and IR spectroscopy study of the room temperature adsorption of CO2 on pure and sulphated t-ZrO2. Thermochim Acta 379:147–161

    Article  CAS  Google Scholar 

  • Bouvier P, Lucazeau G (2000) Raman spectra and vibrational analysis of nanometric tetragonal zirconia under high pressure. J Phys Chem Solids 61:569–578

    Article  CAS  Google Scholar 

  • Chen L, Mashimo T, Omurzak E, Okudera H, Iwamoto C, Yoshiasa A (2011) Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid. J Phys Chem C 115:9370–9375

    Article  CAS  Google Scholar 

  • Chraska T, King AH, Berndt CC (2000) On the size-dependent phase transformation in nanoparticulate zirconia. Mater Sci Eng A 286:169–178

    Article  Google Scholar 

  • Ciuparu D, Ensuque A, Shafeev G, Bozon-Verduraz F (2000) Synthesis and apparent bandgap of nanophase zirconia. J Mater Sci Lett 19:931–933

    Article  CAS  Google Scholar 

  • Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  • Fabbro R, Fournier J, Ballard P, Devaux D, Virmont J (1990) Physical study of laser-produced plasma in confined geometry. J Appl Phys 68:775–784

    Article  CAS  Google Scholar 

  • Fabris S, Paxton AT, Finnis MW (2002) A stabilization mechanism of zirconia based on oxygen vacancies only. Acta Mater 50:5171–5178

    Article  CAS  Google Scholar 

  • Garvie RC (1965) The occurrence of metastable tetragonal zirconia as crystallite size effect. J Phys Chem 69:1238–1243

    Article  CAS  Google Scholar 

  • Giese RF Jr (1976) Hydroxyl orientations in gibbsite and bayerite. Acta Cryst B 32:1719–1723

    Article  Google Scholar 

  • Green DJ, Hannink RHJ, Swain MV (1989) Transformation toughening of ceramics. Boca Raton, CRC Press

    Google Scholar 

  • Guo X (1999) On the degradation of zirconia ceramics during low-temperature annealing in water or water vapor. J Phys Chem Solids 60:539–546

    Article  CAS  Google Scholar 

  • Holland TJB, Redfern SAT (1997a) UNITCELL: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics. J Appl Cryst 30:84

    Article  Google Scholar 

  • Holland TJB, Redfern SAT (1997b) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77

    Article  CAS  Google Scholar 

  • Kontoyannis CG, Orkoula M (1994) Quantitative determination of the cubic, tetragonal and monoclinic phases in partially stabilized zirconias by Raman spectroscopy. J Mater Sci 29:5316–5320

    Article  CAS  Google Scholar 

  • Králik B, Chang EK, Louie SG (1998) Structural properties and quasiparticle band structure of zirconia. Phys Rev B 57:7027–7036

    Article  Google Scholar 

  • Li M, Feng Z, Xiong G, Ying P, Xin Q, Li C (2001) Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy. J Phys Chem B 105:8107–8111

    Article  CAS  Google Scholar 

  • Lieth RMA (1977) Preparation and crystal growth of materials with layered structures. Kluwer Academic Publishers, D. Reidel Publishing Company, Holland

    Google Scholar 

  • Lin CH, Chen SY, Ho NJ, Gan D, Shen P (2009) Shape dependent local internal stress of α-Cr2O3 nanocrystal fabricated by pulsed laser ablation. J Phys Chem Solids 70:1505–1510

    Article  CAS  Google Scholar 

  • Liu LG, Bassett WA (1986) Elements, oxides, and silicates: high pressure phases with implications for the Earth’s interior. Oxford University Press, New York

    Google Scholar 

  • Michel D, Perez y Jorba M, Collongues R (1976) Study by Raman spectroscopy of order–disorder phenomena occurring in some binary oxides with fluorite-related structures. J Raman Spectrosc 5:163–180

    Article  CAS  Google Scholar 

  • Mitsuhashi T, Ichihara M, Tatsuke U (1974) Characterization and stabilization of metastable tetragonal ZrO2. J Am Ceram Soc 57:97–101

    Article  Google Scholar 

  • Morant C, Sanz JM, Galan L, Soriano L, Rueda F (1989) An XPS study of the interaction of oxygen with zirconium. Surf Sci 218:331–345

    Article  CAS  Google Scholar 

  • Okasaka K, Nasu H, Kamiya K (1991) Investigation of coordination state of Zr4+ ions in the sol-gel-derived ZrO2–SiO2 glasses by EXAFS. J Noncryst Solids 136:103–110

    Article  CAS  Google Scholar 

  • Phillippi CM, Mazdiyasni KS (1971) Infrared and Raman spectra of zirconia polymorphs. J Am Ceram Soc 54:254–258

    Article  CAS  Google Scholar 

  • Porter DA, Easterling KE, Sherif MY (2009) Phase transformations in metals and alloys, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Quyang F, Yao S (2000) Infrared study of ZrO2 surface sites using adsorbed probe molecules. 2. dimethyl ether adsorption. J Phys Chem B 104:11253–11257

    Article  Google Scholar 

  • Shen P, Lee WH (2001) (111)-specific coalescence twinning and martensitic transformation of tetragonal ZrO2 condensates. Nano Lett 1:707–711

    Article  CAS  Google Scholar 

  • Shi L, Tin KC, Wong NB (1999) Thermal stability of zirconia membranes. J Mater Sci 34:3367–3374

    Article  CAS  Google Scholar 

  • Shukla S, Seal S (2005) Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia. Int Mater Rev 50:45–64

    Article  CAS  Google Scholar 

  • Simeone D, Baldinozzi G, Gosset D, LeCaer S, Mazerolles L (2004) Impact of radiation defects on the structural stability of pure zirconia. Phys Rev B 70:134116-1–134116-7

    Article  Google Scholar 

  • Stefanic G, Music S, Grzeta B, Popovic S, Sekulic A (1998) Influence of pH on the stability of low temperature t-ZrO2. J Phys Chem Solids 59:879–885

    Article  CAS  Google Scholar 

  • Tan D, Teng Y, Liu Y, Zhuang Y, Qiu J (2009) Preparation of zirconia nanoparticles by pulsed laser ablation in liquid. Chem Lett 38:1102–1103

    Article  CAS  Google Scholar 

  • Teufer G (1962) The crystal structure of tetragonal ZrO2. Acta Cryst 15:1187

    Article  CAS  Google Scholar 

  • Tsai MH, Chen SY, Shen P (2005) Condensation and relaxation/transformation of dense t-ZrO2 nanoparticles. J Chem Phys 122:204708-1–204708-6

    Article  Google Scholar 

  • Tsai MH, Chen SY, Shen P (2006) Laser ablation condensation of polymorphic ZrO2 nanoparticles: effects of laser parameters, residual stress, and kinetic phase change. J Appl Phys 99:054302-1–054302-8

    Google Scholar 

  • Wefers K, Misra C (1987) Oxides and hydroxides of aluminum. Alcoa Technical Paper No. 19, Revised. Alcoa Laboratories, Pittsburgh

    Google Scholar 

  • Whitney ED (1965) Electrical resistivity and diffusionless phase transformations of zirconia at high temperatures and ultrahigh pressures. J Electrochem Soc 112:91–94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Miss S.Y. Shih for the help on XPS analysis and anonymous referees for constructive comments. This study was supported by Center for Nanoscience and Nanotechnology at NSYSU and National Science Council, Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuei-Yuan Chen.

Appendix

Appendix

See Figs. 11, 12, 13, and 14.

Fig. 11
figure 11

a TEM lattice image of as-fabricated c-ZrO2 nanoparticle ca. 15 nm in size fabricated by PLAL at 800 mJ/pulse for 5 min showing step-wise {111} and {010} facets edge on in [110] zone axis (inset), b after electron irradiation for 2 min showing {111} ledge movement at particle corner (circled)

Fig. 12
figure 12

a TEM lattice image of the c-ZrO2 nanoparticles fabricated by PLAL at 700 mJ/pulse for 5 min and then subject to electron dosage for 5 min (b, c) and d, e 2D Fourier forward and inverse Fourier transform from the square regions I and II, respectively in (a) showing dislocation with (1\( \overline{1} \)1) half plane and (1\( \overline{1} \)1) fault due to a coalescence event

Fig. 13
figure 13

XPS with specified binding energies of a Zr and b O of the hydrogenated ZrO2 nanocondensates fabricated by PLAL at 700 mJ/pulse followed by prolonged dwelling in water for 6 months to blur the low valence state of Zr as circled in (b)

Fig. 14
figure 14

Hypothetical free energy versus specific volume curves of c-, t-, and m-ZrO2 phases for polymorphic phase transformations during PLA. Note the equilibrium t/m phase boundary was believed to follow a negative dT/dP slope up to 1.5 GPa (Whitney 1965). The c/t phase boundary is also expected to be negative since the c-fluorite structure is more closely packed than the t form (Liu and Bassett 1986). Thus, from thermodynamic point of view, zirconia should be c-, t-, and m-phase in the order of increasing specific volume having 2-phase equilibria defined by the cotangent of the free energy versus cell volume curves. However kinetic phase transition to form metastable intermediate of ZrO2 (solid arrows) may still occur at a specified cell volume depending on the intersection of the free energy versus cell volume curves (i.e., V o or V o′) under the influence of temperature and size (i.e., capillarity effect) as indicated by previous thermodynamic calculations on c- and t-forms (Tsai et al. 2006) and the hypothetical curve of m-phase here

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CH., Huang, CN., Shen, P. et al. Surface modification, martensitic transformation, and optical properties of hydrogenated ZrO2 nanocondensates via pulsed laser ablation in water. J Nanopart Res 13, 6633–6648 (2011). https://doi.org/10.1007/s11051-011-0571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0571-0

Keywords

Navigation