Skip to main content
Log in

Dynamics of radiationless transitions in large molecules: 4. An ensemble of molecules occurring in condensed medium at a finite temperature

  • General Aspects of High Energy Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

Statistically averaged vibration-phonon (VP) states of large molecules occurring in a condensed medium are represented by superpositions of lower excited states of high-frequency intramolecular vibrations and phonons in the state of thermal equilibrium. The dynamics of amplitudes of these states is described by an ensemble of Hamiltonians, wherein the distribution of their parameters characterizes the configuration distribution of the medium and determines the broadening and shift of absorption bands and the time evolution of the ensemble population. The equations of motion for statistically averaged amplitudes, as found by second-order cumulant expansion, coincide with those found by solving the secular equation, which takes into account both intramolecular and VP interactions. The relative contribution of the decay and decoherence to the evolution of the amplitudes has been considered. Critical values at which the transition from regular recurrence cycles to stochastic dynamics takes place have been found for the VP coupling parameters. The ergodicity of VP systems and the conditions of separation of the intramolecular and phonon-stimulated dynamics have been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benderskii, V.A., High Energy Chem., 2011, vol. 45, no. 6, p. 447.

    Article  CAS  Google Scholar 

  2. Benderskii, V.A., High Energy Chem., 2012, vol. 46, no. 1, p. 10.

    Article  CAS  Google Scholar 

  3. Benderskii, V.A., High Energy Chem., 2012, vol. 46, no. 5, p. 297.

    Article  CAS  Google Scholar 

  4. Redfield, A.G., Adv. Magn. Reson., 1965, vol. 1, p. 1.

    Google Scholar 

  5. Figuerido, F.E. and Levy, R.M., J. Chem. Phys., 1992, vol. 97, p. 703.

    Article  Google Scholar 

  6. Kubo, R.J., Phys. Soc. Jpn., 1957, vol. 12, p. 570.

    Article  Google Scholar 

  7. Kubo, R.J., Phys. Soc. Jpn., 1962, vol. 17, p. 1100.

    Article  Google Scholar 

  8. Nitzan, A. and Silbey, R.J., J. Chem. Phys., 1974, vol. 60, p. 4070.

    Article  CAS  Google Scholar 

  9. Akhiezer, A.I. and Peletminskii, S.V., Metody statisticheskoi fiziki (Methods of Statistical Physics), Moscow: Nauka, 1977.

    Google Scholar 

  10. Nitzan, A. and Persson, B.N., J. Chem. Phys., 1985, vol. 83, p. 5610.

    Article  CAS  Google Scholar 

  11. Mukamel, S., Principles of Nonlinear Optical Spectroscopy, Oxford: Oxford Univ. Press, 1995.

    Google Scholar 

  12. Mehta, M.L., Random Matrices, New York: Academic, 1968.

    Google Scholar 

  13. Bohigas, O., Tomsovic, S., and Ulmo, D., Phys. Rep., 1993, vol. 223, p. 43.

    Article  Google Scholar 

  14. Papenbrock, T. and Weidenmuller, H.A., Rev. Mod. Phys., 2007, vol. 79, p. 997.

    Article  Google Scholar 

  15. Dietz, W. and Fischer, S.F., J. Chem. Phys., 2000, vol. 113, p. 2741.

    Article  CAS  Google Scholar 

  16. Mukamel, S., Chem. Phys., 1978, vol. 31, p. 327.

    Article  CAS  Google Scholar 

  17. Omnes, R., Phys. Rev. A, 2002, vol. 65, p. 052119.

    Article  Google Scholar 

  18. Strunz, W.T. and Haake, F., Phys. Rev. A, 2003, vol. 67, p. 022102.

    Article  Google Scholar 

  19. Schlosshauer, M., Rev. Mod. Phys., 2004, vol. 76, p. 1267.

    Article  Google Scholar 

  20. Habenicht, B.F., Kamisaka, H., Yamashita, K., and Preshdo, O.V., Nanoletters, 2007, vol. 7, p. 3260.

    Article  CAS  Google Scholar 

  21. Gorin, T., Prosen, T., Seligman, T.H., and Znidaric, M., Phys. Rep., 2006, vol. 435, p. 33.

    Article  Google Scholar 

  22. Benderskii, V.A., Fal’kovskii, L.A., and Kats, E.I., Pis’ma Zh. Eksp. Teor. Fiz., 2007, vol. 86, p. 221.

    CAS  Google Scholar 

  23. Benderskii, V.A., Gak, L.N., and Kats, E.I., Zh. Eksp. Teor. Fiz., 2009, vol. 136, p. 589.

    Google Scholar 

  24. Benderskii, V.A. and Kats, E.I., Pis’ma Zh. Eksp. Teor. Fiz., 2008, vol. 88, p. 387.

    Google Scholar 

  25. Habenicht, B.F., Kalugin, O.N., and Preshdo, O.V., Nanoletters, 2008, vol. 8, p. 2516.

    Article  Google Scholar 

  26. Slichter, Ch., Principles of Magnetic Resonance, Heidelberg: Springer, 1978.

    Google Scholar 

  27. Gray, R.M., Probability, Random Processes and Ergodic Properties, New York: Springer, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Benderskii.

Additional information

Original Russian Text © V.A. Benderskii, 2013, published in Khimiya Vysokikh Energii, 2013, Vol. 47, No. 1, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benderskii, V.A. Dynamics of radiationless transitions in large molecules: 4. An ensemble of molecules occurring in condensed medium at a finite temperature. High Energy Chem 47, 1–11 (2013). https://doi.org/10.1134/S0018143913010025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143913010025

Keywords

Navigation