Skip to main content
Log in

An equation of motion approach for the vibrational transition energies in the effective harmonic oscillator formalism: the Random phase approximation

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A theory for calculating vibrational energy levels and infrared intensities is developed in the equation of motion framework at the random phase approximation level. The vibrational Hamiltonian is expanded in the harmonic oscillator ladder operators making a Hamiltonian a bosonic Hamiltonian. The excitation operator is expanded to include at most two creations and two annihilation operators making it equivalent to the random phase approximation. The method is applied for the calculation of vibrational spectral properties of two molecules. The results are found to be satisfactory, making this approach a viable option for large molecular systems.

Graphic abstract

A theory for calculating vibrational energy levels and infrared intensities is developed in the equation of motion framework at the random phase approximation level. The vibrational Hamiltonian is expressed in bosonic representation. The excitation operator is expanded to include at most two creation and annihilation operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Lasch P and Kneipp J 2008 Biomedical vibrational spectroscopy (Hoboken: Wiley); (b) Siebert F and Hildebrandt P 2008 Vibrational spectroscopy in life science: Tutorials in biophysics (Hoboken: Wiley); (c) Larkin P 2011 Infrared and raman spectroscopy: principles and spectral interpretation (Amsterdam: Elsevier)

  2. Watson J K G 1968 Simplification of the molecular vibration-rotation hamiltonian Mol. Phys. 15 479

    CAS  Google Scholar 

  3. Bowman J M 1978 Self-consistent field energies and wavefunctions for coupled oscillators J. Chem. Phys. 68 608

    CAS  Google Scholar 

  4. Bowman J M 1986 The self-consistent-field approach to polyatomic vibrations Acc. Chem. Res. 19 202

    CAS  Google Scholar 

  5. Carney D G, Sprandel L L and Kern C W 1978 Variational Approaches to Vibration-Rotation Spectroscopy for Polyatomic Molecules Adv. Chem. Phys. 37 305

    CAS  Google Scholar 

  6. Chaban G M, Jung J O and Gerber R B 1999 Ab initio calculation of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field J. Chem. Phys. 111 1823

    CAS  Google Scholar 

  7. Gerber R B, Chaban G M, Brauer B and Miller Y 2005 In Theory and applications of computational chemistry: the first forty years C E Dykstra, G Frenking, K Kim and G Suceria (Eds.) (Tokyo: Elsevier) Ch. 9 pp. 165–194

  8. Christoffel K M and Bowman J M 1982 Investigations of self-consistent field, scf ci and virtual stateconfiguration interaction vibrational energies for a model three-mode system Chem. Phys. Lett. 82 220

    Google Scholar 

  9. Carter S and Handy N C 1986 The variational method for the calculation of RO-vibrational energy levels Comput. Phys. Rep. 5 117

    Google Scholar 

  10. Hirata S and Hermes M R 2014 Normal-ordered second-quantized Hamiltonian for molecular vibrations J. Chem. Phys. 141 184111

    PubMed  Google Scholar 

  11. Christiansen O , Kongsted J , Paterson M J and Luis J M 2006 Linear response functions for a vibrational configuration interaction state J. Chem. Phys. 125 214309

    PubMed  Google Scholar 

  12. Seidler P, Hansen M B, Gyorffy W, Toffoli D and Christiansen O 2010 Vibrational absorption spectra calculated from vibrational configuration interaction response theory using the Lanczos method J. Chem. Phys. 132 164105

    PubMed  Google Scholar 

  13. Neff M and Rauhut G 2009 Toward large scale vibrational configuration interaction calculations J. Chem. Phys. 131 124129

    PubMed  Google Scholar 

  14. Nielsen H H 1951 The vibration-rotation energies of molecules Rev. Mod. Phys. 23 90

    CAS  Google Scholar 

  15. Barone V 2005 Anharmonic vibrational properties by a fully automated second-order perturbative approach J. Chem. Phys. 122 014108

    Google Scholar 

  16. Bloino J and Barone V 2012 A second-order perturbation theory route to vibrational averages and transition properties of molecules: General formulation and application to infrared and vibrational circular dichroism spectroscopies J. Chem. Phys. 136 124108

    PubMed  Google Scholar 

  17. Barone V, Biczysko M and Bloino J 2014 Fully anharmonic IR and Raman spectra of medium-size molecular systems: accuracy and interpretation Phys. Chem. Chem. Phys. 16 1759

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Culot F and Lievin J 1992 Ab initio calculation of vibrational dipole moment matrix elements. II. the water molecule as a polyatomic test case Phys. Scr. 46 502

    CAS  Google Scholar 

  19. Boese A D and Martin J M L 2004 Vibrational spectra of the azabenzenes revisited: anharmonic force fields J. Phys. Chem. A. 108 3085

    CAS  Google Scholar 

  20. Sibert III E L 1988 Theoretical studies of vibrationally excited polyatomic molecules using canonical Van Vleck perturbation theory J. Chem. Phys. 88 4378

    CAS  Google Scholar 

  21. Sibert III E L 1989 Rotationally induced vibrational mixing in formaldehyde J. Chem. Phys. 90 2672

    CAS  Google Scholar 

  22. Seidler P, Kongsted J and Christiansen O 2007 Calculation of vibrational infrared intensities and raman activities using explicit anharmonic wave functions J. Phys. Chem. A. 111 11205

    CAS  PubMed  Google Scholar 

  23. Christiansen O 2004 Vibrational coupled cluster theory J. Chem. Phys. 120 2149

    CAS  PubMed  Google Scholar 

  24. Seidler P and Christiansen O 2007 Vibrational excitation energies from vibrational coupled cluster response theory J. Chem. Phys. 126 204101

    PubMed  Google Scholar 

  25. Seidler P, Hansen M B and Christiansen O 2008 Towards fast computations of correlated vibrational wave functions: Vibrational coupled cluster response excitation energies at the two-mode coupling level J. Chem. Phys. 128 154113

    PubMed  Google Scholar 

  26. Seidler P and Christiansen O 2009 Automatic derivation and evaluation of vibrational coupled cluster theory equations J. Chem. Phys. 131 234109

    PubMed  Google Scholar 

  27. Nagalakshmi V, Lakshminarayana V, Sumithra G and Durga Prasad M 1994 Coupled cluster description of anharmonic molecular vibrations. Application to O\(_3\) and SO2 Chem. Phys. Lett. 217 279

    Google Scholar 

  28. Banik S Pal S and Durga Prasad M 2010 Calculation of dipole transition matrix elements and expectation values by vibrational coupled cluster method J. Chem. Theor. Comput. 6 3198

    Google Scholar 

  29. Banik S, Pal S and Durga Prasad M 2008 Calculation of vibrational energy of molecule using coupled cluster linear response theory in bosonic representation: Convergence studies J. Chem. Phys. 129 134111

    PubMed  Google Scholar 

  30. Banik S, Pal S and Durga Prasad M 2012 Vibrational multi-reference coupled cluster theory in bosonic representation J. Chem. Phys. 137 114108

    PubMed  Google Scholar 

  31. Banik S and Durga Prasad M 2012 On the spectral intensities of vibrational transitions in polyatomic molecules: role of electrical and mechanical anharmonicities Theor. Chem. Acc. 131 1383

    Google Scholar 

  32. Durga Prasad M 2000 Calculation of vibrational spectra by the coupled cluster method – Applications to \(H_2S\)  Indian. J. Chem. 39A 196

    Google Scholar 

  33. Faucheaux J A and Hirata S 2015 Higher-order diagrammatic vibrational coupled-cluster theory J. Chem. Phys. 143 134105

    PubMed  Google Scholar 

  34. Banik S 2016 On the choice electronic structure method to calculate the quartic potential energy surface for the vibrational calculation of polyatomic molecules Theor. Chem. Acc. 135 203

    Google Scholar 

  35. Yagi K, Hirata S and Hirao K 2008 Vibrational quasi-degenerate perturbation theory: applications to fermi resonance in \(CO_2\), \(H_2CO\), and \(C_6H_6\) Phys. Chem. Chem. Phys. 10 1781

    CAS  PubMed  Google Scholar 

  36. Yagi K and Otaki H 2014 Vibrational quasi-degenerate perturbation theory with optimized coordinates: applications to ethylene and trans-1,3-butadiene J. Chem. Phys. 140 084113

    PubMed  Google Scholar 

  37. Ravichandran L and Banik S 2018 Anomalous description of the anharmonicity of bending motions of carbon–carbon double bonded molecules with the MP2 method: ethylene as a case study Phys. Chem. Chem. Phys. 20 27329

    CAS  PubMed  Google Scholar 

  38. Roy T K and Durga Prasad M 2009 Effective harmonic oscillator description of anharmonic molecular vibrations J. Chem. Sci. 121 805

    CAS  Google Scholar 

  39. Roy T K and Durga Prasad M 2009 A thermal self-consistent field theory for the calculation of molecular vibrational partition functions J. Chem. Phys. 131 114102

    PubMed  Google Scholar 

  40. Roy T K and Durga Prasad M 2011 Development of a new variational approach for thermal density matrices J. Chem. Phys. 134 214110

    PubMed  Google Scholar 

  41. Emakov K V, Butayev S and Spirinov V P 1988 Application of the effective harmonic oscillator in thermodynamic perturbation theory Chem. Phys. Lett. 144 497

    Google Scholar 

  42. Cao J and Voth G A 1995 Modeling physical systems by effective harmonic oscillators: The optimized quadratic approximation J. Chem. Phys. 102 3337

    CAS  Google Scholar 

  43. Epstein S T 1974 Variational Method in Quantum Chemistry (New York: Academic Press)

    Google Scholar 

  44. Rowe D J 1968 Equations-of-motion method and the extended shell model Rev. Mod. Phys. 40 153

    Google Scholar 

  45. (a) Bohm D and Pines D 1951 A collective description of electron interactions. I. Magnetic interactions Phys. Rev. 82 625; (b) Pines D and Bohm D 1952 A Collective Description of Electron Interactions: II. Collective vs Individual Particle Aspects of the Interactions Phys. Rev. 85 338; (c) Bohm D and Pines D 1953 A Collective Description of Electron Interactions: III. Coulomb Interactions in a Degenerate Electron Gas Phys. Rev. 92 609; (d) Ring P and Schuck P 1980 The nuclear many body problem (Berlin: Springer)

  46. (a) Casida M E 1998 Recent advances in density functional methods Part I, D P Chong (Ed.) (Singapore: World Scientific) p. 155; (b) Onida G, Reining I and Rubio A 2002 Electronic excitations: density-functional versus many-body Green’s-function approaches Rev. Mod. Phys. 74 601; (c) Casida M E, Jamorski C, Casida K C, and Salahub D R 1998 Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold J. Chem. Phys. 108 4439

  47. Shibuya T and Mc. Koy V 1970 Higher random-phase approximation as an approximation to the equations of motion Phys. Rev. A 2 2208

    Google Scholar 

  48. Altick P L and Galssgold A E 1964 Correlation effects in atomic structure using the random-phase approximation Phys. Rev. A 133 632

    CAS  Google Scholar 

  49. Ikeda K , Udagawa T and Yamamura H 1965 On the effect of Pauli principle on collective vibrations in nuclei Prog. Theor. Phys. 33 22

    CAS  Google Scholar 

  50. Dukelsky J and Schuck P 1991 Variational random phase approximation for the anharmonic oscillator Mod. Phys. Lett. 6 2429

    Google Scholar 

  51. (a) Oddershede J 1979 Polarization propagator calculations Adv. Quantum Chem. 11 275; (b) Furche F and Voorhis T V 2005 Fluctuation-dissipation theorem density-functional theory J. Chem. Phys. 122 164106

  52. (a) Harl J and Kresse G 2008 Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation- dissipation theory Phys. Rev. B 77 045136; (b) Fuchs M and Gonze X 2002 Accurate density functionals: Approaches using the adiabatic-connection fluctuation-dissipation theorem Phys. Rev. B 65 235109

  53. (a) Langreth D C and Perdew J P 1997 Exchange-correlation energy of a metallic surface: Wave-vector analysis Phys. Rev. B 15 2884; (b) Gunnarsson O and Lundqvist B I 1976 Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism Phys. Rev. B 13 4274

  54. (a) Freeman D L 1977 Coupled-cluster expansion applied to the electron gas: Inclusion of ring and exchange effects Phys. Rev. B 15 5512; (b) Susceria G E, Henderson T M and Sorensen D C 2008 The ground state correlation energy of the random phase approximation from a ring coupled cluster doubles approach J. Chem. Phys. 129 231101; (c) Susceria G E, Henderson T M and Bulik I W 2013 Particle-particle and quasiparticle random phase approximations: Connections to coupled cluster theory J. Chem. Phys. 139 104113

  55. (a) Davesne D, Oertel M and Hansen H 2003 A consistent approximation scheme beyond RPA for bosons Eur. Phys. J. A 16 35; (b) Hansen H, Chanfrey G, Davesne D and Schuck P 2002 Random phase approximation and extensions applied to a bosonic field theory Eur. Phys. J. 14 397; (c) Delion D S, Schuck P and Tohyama M 2016 Sum-rules and Goldstone modes from extended random phase approximation theories in Fermi systems with spontaneously broken symmetries Eur. Phys. J. 89 45

  56. Linderberg J and Ohrn Y 2005 Propagators in Quantum Chemistry 2nd edn. (Hoboken, New Jersey: Wiley-Interscience) p. 7

    Google Scholar 

  57. Schirmer J 2018 in Many-Body methods for atoms, molecules and clusters In Lecture Notes in Chemisty (Switzerland: Springer Nature). Vol. 94 p. 141

  58. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas o, Foresman J B, Ortiz J V, Cioslowski J, Fox D J 2009 Gaussian09 Revision B.01

  59. Shimanouchi T 1972 Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards 1−160

  60. Dreuw A and Head-Gordon M 2005 Single-reference ab initio methods for the calculation of excited states of large molecules Chem. Rev. 105 4009

    CAS  PubMed  Google Scholar 

  61. Thouless D J 1961 Vibrational states of nuclei in the random phase approximation Nucl. Phys. 22 78

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support for infrastructure development through UPE and CAS programs from UGC, India and PURSE and FIST programs from DST, India are gratefully acknowledged. LR acknowledges D. S. Kothari post doctoral fellowship from UGC, India for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Durga Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinesh, T., Ravichandran, L. & Prasad, M.D. An equation of motion approach for the vibrational transition energies in the effective harmonic oscillator formalism: the Random phase approximation. J Chem Sci 132, 14 (2020). https://doi.org/10.1007/s12039-019-1687-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1687-5

Keywords

Navigation