Skip to main content
Log in

Morphotectonics of Alborz Province (Iran): A Case Study Using GIS Method

  • Published:
Geotectonics Aims and scope

Abstract

The most active tectonic areas based on morphotectonic indices is the main aim of this study, are characterized. Mechanical deformation resulting mostly from the Arabia-Eurasia collision is amalgamated by the Alborz Mountains in the form of folding and faulting. The proposed area includes the Alborz province in northern Iran as part of the Alborz mountain range that has seismogenic faults and large earthquakes. Therefore, the basins’ morphologies and shapes are associated with tectonic activity. In this study, the morphometric indices of valley height-width (Vf), asymmetry factor (Af), basin shape (Bs), topographic symmetry factor (T), hypersonic curve (Hc), hypersonic integral (Hi), and river sinuosity (S) were measured for the 33 number basins to assess tectonic activity. Using indices of related active tectonics (IRAT) and weighting and combining morphometric indices, a map was prepared that showed an eye-shaped area at the center of the study area (Hashtgerd) that had high tectonic activity. The tectonic setting survey specified a crush zone because of the collision of active faults near Hashtgerd. A comparison of field observations clearly indicated that the highly active eye-shaped area had a good correlation with the crushed zone and hypocenter of large earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. A. Azor, E. A. Keller, and R. S. Yeats, “Geomorphic indicators of active fold growth: South Mountain-Oak Ridge Ventura basin, southern California,” Geol. Soc. Am. Bull. 114, 745–753 (2002).

    Article  Google Scholar 

  2. D. Bachmanov, V. G. Trifonov, K. Hessami, A. Kozhurin, T. P. Ivanova, E. Rogozhin, M. C. Hademi, and F. Jamali, “Active faults in the Zagros and Central Iran,” Tectonophysics 380, 221‒241 (2004).

    Article  Google Scholar 

  3. M. Berberian, Preliminary Report on the Structural Analysis of Ipak Active Fault, Vol. 130 of Geol. Surv. Iran, Rep. (1971).

  4. M. Berberian, Earthquake and Coseismic Surface Faulting on the Iranian Plateau: A Historical, Social, and Physical Approach (Elsevier, New York, 2014).

    Google Scholar 

  5. M. Berberian and G. C. P. King, “Towards a paleogeography and tectonic evolution of Iran,” J. Earth Sci. 18, 1764‒1766 (1981).

    Google Scholar 

  6. M. Berberian, M. Qorashi, B. Arzhang-Ravesh, and A. Mohajer-Ashjai, “Recent tectonics, seismotectonics and earthquake-fault hazard investigation in the Greater Qazvin region,” in Contribution to the Seismotectonics of Iran (Geol. Surv. Iran, Tehran, 1983).

    Google Scholar 

  7. W. B. Bull, Geomorphic Tectonic Classes of the South Front of the San Gabriel Mountain, U.S. Geol. Surv. Contract. Rep. 14-08-001-G-394 (Off. Earthquakes, Volcanoes Eng., Menlo Park, Calif., 1978).

  8. W. B. Bull and L. D. Mcfadden, “Tectonic geomorphology north and south of the Garlock fault, California,” in Geomorphology in Arid Regions: Proceedings of the 8th Annual Geomorphology Symposium, Binghamton, N.Y., 1984, Ed. by D. O. Doehring (State Univ. New York, Binghamton, USA,1977), pp. 118‒138.

  9. P. J. Cannon, “Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin,” Okla. Geol. Notes. 36 (1), 3‒16 (1976).

    Google Scholar 

  10. R. J. Chorley and L. S. D. Morley, “A simplified approximation for the hypsometric,” Integral. J. Geol. 67, 566‒571 (1959).

    Article  Google Scholar 

  11. R. T. Cox, “Analysis of drainage basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment,” Geol. Soc. Am. Bull. 106, 571‒581 (1994).

    Article  Google Scholar 

  12. R. T. Cox, R. B. Van Arsdale, and J. B. Harris, “Identification of possible Quaternary deformation in the northern Mississippi embayment using quantitative geomorphic analysis of drainage–basin asymmetry,” GSA Bull. 113, 615–624 (2001).

    Article  Google Scholar 

  13. H. Daxberger, R. Dalumpines, D. Scott, and U. Riller, “The ValleyMorph Tool: An automated extraction tool for transverse topographic symmetry (T-) factor and valley width to valley height (Vf-) ratio,” Comput. Geosci. 70, 154‒163 (2014).

    Article  Google Scholar 

  14. J. Dellenbachs, PhD Thesis (Strasbourg, 1964).

  15. R. El Hamdouni, C. Irigaray, T. Fernández, J. Chacón, and E. A. Keller, “Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain),” Geomorphology 96, 150‒173 (2008).

    Article  Google Scholar 

  16. S. Haerifard, H. Jarahi, M. Pourkermani, and M. Almasian, “Seismic hazard assessment at Esfaraen‒Bojnurd railway, North‒East of Iran,” Geotectonics 52, 151‒156 (2018).

    Article  Google Scholar 

  17. M. Haqiqat, M. Javaheri Tafti, and H. Jarahi, “Seismic hazard assessment and finding the effective fault at Shiraz Area using seismic hazard deaggregation method,” The 21st Symposium of the Geological Society of Iran, Qom, Iran,2018, pp. 8‒18.

  18. M. Honarvar, H. Jarahi, and M. Nadalian, “Seismic hazard macrozonation in Karaj area,” National Conference in Applied Civil Engineering and New Achievements, Karaj, Iran,2014, pp. 19‒26.

  19. J. E. Hurtrez and F. Lucazeau, “Effect of drainage area on hypsometry from an analysis of small-scale drainage basins in the Siwalik hills (Central Nepal),” Earth Surf. Processes Landforms 24, 799–808 (1999).

    Article  Google Scholar 

  20. J. Jackson, K. Priestley, M. Allen, and M. Berberian, “Active tectonics of the South Caspian Basin,” Geophys. J. Int. 148, 214‒245 (2002).

    Google Scholar 

  21. H. Jarahi, MS Thesis (Tehran, 2011).

  22. H. Jarahi, “Ground-motion scenarios consistent with probabilistic seismic hazard deaggregation for Karaj city (Iran),” Am. J. Eng. Appl. Sci. 9, 520‒529 (2016).

    Article  Google Scholar 

  23. H. Jarahi, “Damavand earthquake of 2020, The mainshock or an alarm for disaster for Capital of Iran,” Earth Sci. Res. J. 25 (1), 23‒32 (2020).

    Google Scholar 

  24. H. Jarahi, “Delineate location of the last earthquake case study NW of Iran,” Current Res. Geosci. 7 (1), 7‒13 (2017).

    Article  Google Scholar 

  25. H. Jarahi, Geohazard Analysis Modern Methodology of Seismic, Landslide, and Liquefaction Hazard Macrozonation of Iran (Samt Publ., Tehran, 2019).

    Google Scholar 

  26. H. Jarahi, “Paleo-mega lake evidence and its effect on civilizations taking place case study, SE Tehran,” Interantional Symposium of the Near Eastern Landscape Archaeology, Istanbul, Turkey,2019, p. 14.

  27. H. Jarahi, N. Naraghiaraghi, and M. Nadalian, “Short period spectral acceleration zonation of Tehran a comparison between slip and activity rates data’s,” Current. Res. Geosci. 6 (1), 36‒46 (2016).

    Article  Google Scholar 

  28. E. A. Keller and N. Pinter, Active Tectonics: Earthquakes, Uplift, and Landscape (Prentice-Hall, Upper Saddle River, N.J., 2002).

    Google Scholar 

  29. P. Molin, F. J. Pazzaglia, and F. Dramis, “Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, Southern Italy,” Am. J. Sci. 304, 559–589 (2004).

    Article  Google Scholar 

  30. J. E. Muller, “An introduction to the hydraulic and topographic sinuosity indexes,” Ann. Assoc. Am. Geograph. 58, 371‒385 (1968).

    Article  Google Scholar 

  31. R. J. Pike and S. E. Wilson, “Elevation–relief ratio, hypsometric integral and geomorphic area-altitude analysis,” GSA Bull. 82, 1079–1084 (1971).

    Article  Google Scholar 

  32. M. Pourkermani, I. Golabatunchi, N. Ahmadi Comijany, and H. Jarahi, “Seismic hazard assessment in site of Behjatabad Dam, Abyek Qazvin area,” 7th Symposyum of Engineering Geology and Existence, Shahrood, Iran,2012 (Shahrood Ind. Univ., 2012), p. 6.

  33. M. Ramírez-Herrera, “Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt,” Earth Surf. Processes Landforms 23, 317–332 (1998).

    Article  Google Scholar 

  34. T. K. Rockwell, E. A. Keller, and D. L. Johnson, “Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California,” in Tectonic Geomorphology: Proceedings of the 15th Annual Binghamton Geomorphology Symposium, Binghamton, N.Y.,1984, Ed. by M. Morisawa and J. T. Hack (Allen & Unwin, Boston, 1985), pp.183–207.

  35. S. A. Schumm, “Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey,” GSA Bull. 67, 597–646 (1956).

    Article  Google Scholar 

  36. A. N. Strahler, “Hypsometric (area-altitude) analysis of erosional topography,” GSA Bull. 63, 1117‒1142 (1952).

    Article  Google Scholar 

  37. A. N. Strahler, “Quantitative geomorphology of drainage basins and channel networks,” in Handbook of Applied Hydrology, Ed. by V. T. Chow (McGraw-Hill, New York, 1964), pp. 439‒476.

    Google Scholar 

  38. J. S. Tchalenko, M. Berberian, H. Iranmanesh, M. Baily, and M. Arsovsky, “Tectonic framework of the Tehran region,” in Contribution to the Seimsotecotnics of Iran, Vol. 29 of Geol. Surv. Iran Rep. (1974), pp. 7‒46.

  39. I. M. Tsodoulos, I. K. Koukouvelas, and S. Pavlides, “Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece),” Tectonophysics 453, 211‒232 (2008).

    Google Scholar 

  40. W. Viveen, R. T. van Balen, J. M. Schoorl, A. Veldkamp, A. J. A. M. Temme, and J. R. Vidal-Romani, “Assessment of recent tectonic activity on the NW Iberian Atlantic Margin by means of geomorphic indices and field studies of the lower Miño River terraces,” Tectonophysics 544‒545, 13‒30 (2012).

    Article  Google Scholar 

  41. A. Zamanfashami, M. Nadalian, and H. Jarahi, “Determine the controlling earthquake by deaggregation method in Behjatabad Dam,” J. Sci. 22 (85), 87‒99 (2012).

    Google Scholar 

  42. F. Zhi-Ping, H. Guo-Fen, and X. Si-Han, “A method for multiple attribute decision-making with the fuzzy preference relation on alternatives,” Comput. Ind. Eng. 46, 321–327 (2004).

    Article  Google Scholar 

  43. ArcGIS software, An overview of the Analysis toolbox in ArcMap 10.3. https://desktop.arcgis.com/en/a-rcmap/ 10.3/tools/analysis-toolbox/an-overview-of-the-analysis-toolbox.htm. Accessed May 23, 2019.

Download references

ACKNOWLEDGMENTS

The authors are sincere grateful to reviewers Prof. V.G. Trifonov and Prof. A.I. Kozhurin (both at the Geological Institute, Russian Academy of Sciences, Moscow, Russia) for their useful comment that allowed us to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pourkermani.

Additional information

Reviewers: V.G. Trifonov, A.I. Kozhurin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taesiri, V., Pourkermani, M., Sorbi, A. et al. Morphotectonics of Alborz Province (Iran): A Case Study Using GIS Method. Geotecton. 54, 691–704 (2020). https://doi.org/10.1134/S001685212005009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001685212005009X

Keywords:

Navigation