Skip to main content
Log in

The peculiarities of the structural and functional state of the cytochrome component of the liver mitochondrial respiratory chain under conditions of acetaminophen-induced hepatitis on the background of alimentary protein deprivation

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The activity of a key enzyme of the cytochrome component of the respiratory chain (cytochrome oxidase), the quantitative redistribution of mitochondrial cytochromes b, c 1, c, and aa 3, as well as the activities of the key enzymes of cytochrome heme metabolism (δ-aminolevulinate synthase and heme oxygenase) under conditions of acetaminophen-induced liver injury were studied on the background of dietary protein deprivation. Under conditions of acetaminophen-induced hepatitis that developed on the background of alimentary protein deprivation, an inhibition of cytochrome oxidase activity and a decrease in the contents of mitochondrial cytochromes on the background of an increase in the δ-aminolevulinate synthase and heme oxygenase activity were observed. In animals with a toxic liver injury that were kept under conditions of dietary protein deprivation, the contents of mitochondrial cytochromes b, c 1, c, and aa 3 progressively decreased, which was accompanied by an increase in heme oxygenase activity, whereas δ-aminolevulinate synthase activity remained at the control level. It was concluded that dietary protein deprivation is a critical factor for the development of disturbances in the structural-functional integrity of the cytochrome component of the respiratory chain. The identified changes can be considered as a possible mechanism that underlies the disturbance in the function of the energy biotransformation system under conditions of dietary protein deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Borlak, B. Chatterji, K. B. Londhe, and P. B. Watkins, Genome Medicine 5 (86), 2 (2013).

    Google Scholar 

  2. E. Yu. Eremina, Gastroenterol. St. Peterb. 1, 6 (2012).

    Google Scholar 

  3. K. Somanawat, D. Thong-Ngam, and N. Klaikeaw, World J. Gastroenterol. 19 (12), 1962 (2013).

    Article  Google Scholar 

  4. N. R. Carvalho, E. F. Rosa, M. H. Silva, et al., PLOS ONE 8 (12), e81961 (2013).

    Article  ADS  Google Scholar 

  5. V. Sangar, A. Eddy, N. D. Price, and E. Simeonidis, Front. Physiol. 3, 404 (2012).

    Article  Google Scholar 

  6. S. S. Kuznetsova, N. V. Azarkina, T. V. Vygodina, S. A. Siletsky, and A. A. Konstantinov, Biochemistry (Moscow) 70 (2), 128 (2005).

    Google Scholar 

  7. O. N. Voloshchuk, M. M. Marchenko, and M. S. Mudrak, Biomed. Khim. 58 (6), 684 (2012).

    Article  Google Scholar 

  8. N. V. Kharchenko, G. A. Anokhina, and V. V. Kravchenko, Suchasna Gastroenterol. 4 (66), 76 (2012).

    Google Scholar 

  9. E. Pasini, R. Aquilani, F. S. Dioguardi, et al., Am. J. Cardiol. 101 (1), 11E–15E (2008).

    Article  Google Scholar 

  10. G. P. Kopyl’chuk and O. M. Voloshchuk, Ukr. Biokhim. Zh. 87 (1), 20 (2015).

    Google Scholar 

  11. T. V. Barannik, N. M. Inshina, and P. A. Kaliman, Ukr. Biokhim. Zh. 77 (5), 120 (2005).

    Google Scholar 

  12. S. Bansal, G. Biswas, and N. G. Avadhan, Redox Biol. 2, 273 (2014).

    Article  Google Scholar 

  13. O. N. Voloshchuk, G. P. Kopyl’chuk, and T. G. Kadaiskaya, Vopr. Pitaniya 3, 12 (2014).

    Google Scholar 

  14. G. Kuvandik, M. Duru, A. Nacar, et al., Toxicol. Pathol. 36, 714 (2008).

    Article  Google Scholar 

  15. O. N. Voloshchuk and M. M. Marchenko, Byull. Eksp. Biol. Med. 156 (7), 103 (2013).

    Google Scholar 

  16. M. M. Marchenko and O. N. Voloshchuk, Radiat. Biol. Radioekol. 52 (5), 496 (2012).

    Google Scholar 

  17. A. Collins, H. Marver, and P. Tschudy, J. Biol. Chem. 241 (19), 4323 (1966).

    Google Scholar 

  18. D. P. Converso, C. Taille, M. S. Carreras, et al., FASEB J. 20 (8), 1236 (2006).

    Article  Google Scholar 

  19. O. H. Lowry, M. J. Rosenbrough, A. L. Farr, and R. J. Rendal, J. Biol. Chem. 193 (1), 265 (1951).

    Google Scholar 

  20. H. J. Kim, O. Khalimonchuk, P. M. Smith, and D. R. Winge, Biochim. Biophys. Acta 1823 (9), 1604 (2012).

    Article  Google Scholar 

  21. K. K. Andringa, M. L. Bajt, H. Jaeschke, and S. M. Bailey, Toxicol. Lett. 177 (3), 188 (2008).

    Article  Google Scholar 

  22. Y. Djeridane, S. Lyoumi, H. Puy, and Y. Touitou, J. Physiol. Pharmacol. 61 (1), 115 (2010).

    Google Scholar 

  23. P. A. Kaliman and T. V. Barannik, Ukr. Biokhim. Zh. 73 (1), 5 (2001).

    Google Scholar 

  24. R. C. Scarpulla, Physiol. Rev. 88, 611 (2008).

    Article  Google Scholar 

  25. T. Takahashi, K. Morita, R. Akagi, and S. Curr. Med. Chem. 11 (12), 1545 (2004).

    Google Scholar 

  26. W. T. Johnson and L. C. DeMars, J. Nutrit. 134, 1328 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Voloshchuk.

Additional information

Original Russian Text © O.N. Voloshchuk, G.P. Kopylchuk, 2015, published in Biofizika, 2015, Vol. 60, No. 3, pp. 519–524.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshchuk, O.N., Kopylchuk, G.P. The peculiarities of the structural and functional state of the cytochrome component of the liver mitochondrial respiratory chain under conditions of acetaminophen-induced hepatitis on the background of alimentary protein deprivation. BIOPHYSICS 60, 420–424 (2015). https://doi.org/10.1134/S0006350915030215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915030215

Keywords

Navigation