Skip to main content
Log in

Replication of the subgenomic hepatitis C virus replicon in the presence of the NS3 protease inhibitors: a stochastic model

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The hepatitis C virus (HCV) belongs to Flaviviridae family and causes hazardous liver diseases leading frequently to cirrhosis and hepatocellular carcinoma. HCV is able to rapidly acquire drug resistance and for this reason there is currently no effective anti-HCV therapy in spite of appearance of new potential drugs. Mathematical models are relevant to predict the efficacy of potential drugs against virus or host targets. One of the promising targets for development of new drugs is the viral NS3 protease. Here we developed a stochastic model of the subgenomic HCV replicon replication in Huh-7 cells and in the presence of the NS3 protease inhibitors. Along with consideration of the stochastic nature of the subgenomic HCV replicon replication, the model takes into account the existence and generation of main NS3 protease drug resistant mutants, namely BILN-2061 (A156T, D168V, R155Q), VX-950 (A156S, A156T, T54A) and SCH-503034 (A156T, A156S, T54A). The model reproduces well the viral RNA kinetics in the cell from the moment of the subgenomic HCV replicon transfection to steady state, as well as the viral RNA suppression kinetics in the presence of NS3 protease inhibitors BILN-2061, VX-950 and SCH-503034. We showed that the resistant mutants should be taken into account for the correct description of biphasic kinetics of the viral RNA suppression. The mutants selected in the presence of different inhibitor concentrations have maximal replication capacity in the given inhibitor concentration range. Our model can be used to interpret the results of the new anti-HCV drug testing in replicon systems, as well as to predict the efficacy of new potential drugs and optimize the mode of their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. O’Leary and G. L. Davis, Therap. Adv. Gastroenterol. 3, 43 (2010).

    Article  Google Scholar 

  2. J. de Bruijne, J. van de Wetering de Rooij, A. A. Van Vliet, et al., Antimicrob Agents Chemother. 56, 4525 (2012).

    Article  Google Scholar 

  3. D. M. Hotho, J. de Bruijne, A. M. O’Farrell, et al., Antivir. Ther. 17, 365 (2012).

    Article  Google Scholar 

  4. O. Lenz, L. Vijgen, J. M. Berke, et al., J. Hepatol. 58, 445 (2013).

    Article  Google Scholar 

  5. M. H. Powdrill, E. P. Tchesnokov, R. A. Kozak, et al., Proc. Natl. Acad. Sci. USA 108, 20509 (2011).

    Article  ADS  Google Scholar 

  6. V. Lohmann, V. Lohmann, F. Korner, et al., Science 285, 110 (1999).

    Article  Google Scholar 

  7. R. Bartenschlager, A. Kaul, and S. Sparacio, Antivir. Res. 60, 91 (2003).

    Article  Google Scholar 

  8. M. Robinson, Y. Tian, W. E. Delaney, et al., Proc. Natl. Acad. Sci. USA 108, 10290 (2011).

    Article  ADS  Google Scholar 

  9. R. A. Fridell, D. Qiu, L. Valera, et al., J. Virol. 85, 7312 (2011).

    Article  Google Scholar 

  10. J. A. Lemm, D. O’Boyle, M. Liu, et al., J. Virol. 84, 482 (2010).

    Article  Google Scholar 

  11. Y. He, M. S. King, D. J. Kempf, et al., Antimicrob. Agents Chemother. 52, 1101 (2008).

    Article  Google Scholar 

  12. T. Verbinnen, H. Van Marck, I. Vandenbroucke, et al., J. Virol. 84, 11124 (2010).

    Article  Google Scholar 

  13. T. Verbinnen, T. Jacobs, L. Vijgen, et al., J. Antimicrob. Chemother. 67, 2327 (2012).

    Article  Google Scholar 

  14. J. E. Mathy, S. Ma, T. Compton, and K. Lin, Antimicrob. Agents Chemother. 52, 3267 (2008).

    Article  Google Scholar 

  15. A. M. Lam, C. Espiritu, E. Murakami, et al., Antimicrob. Agents Chemother. 55, 2566 (2011).

    Article  Google Scholar 

  16. S. Ali, V. Leveque, S. Le Pogam, et al., Antimicrob. Agents Chemother. 52, 4356 (2008).

    Article  Google Scholar 

  17. D. Moradpour, F. Penin, and C. M. Rice, Nat. Rev. Microbiol. 5, 453 (2007).

    Article  Google Scholar 

  18. Z. Liu, F. Yang, J. M. Robotham, J. Virol. 83, 6554 (2009).

    Article  Google Scholar 

  19. K. L. Berger, J. D. Cooper, N. S. Heaton, et al., Proc. Natl. Acad. Sci. USA 106, 7577 (2009).

    Article  ADS  Google Scholar 

  20. K. Lin, R. B. Perni, A. D. Kwong, and C. Lin, Antimicrob.Agents Chemother. 50, 1813 (2006).

    Article  Google Scholar 

  21. S. J. Matthews and J. W. Lancaster, Clin. Ther. 34, 1857 (2012).

    Article  Google Scholar 

  22. B. A. Malcolm, R. Liu, F. Lahser, et al., Antimicrob.Agents Chemother. 50, 1013 (2006).

    Article  Google Scholar 

  23. M. P. Manns, A. A. Markova, B. Calle Serrano, and M. Cornberg, Liver Int. 32(Suppl 1), 27 (2012).

    Article  Google Scholar 

  24. F. Habersetzer, C. Leboeuf, M. Doffoël, and T. F. Baumert, Pharmgenomics Pers. Med. 5, 125 (2012).

    Google Scholar 

  25. X. Tong, A. Arasappan, F. Bennett, et al., Antimicrob. Agents Chemother. 54, 2365 (2010).

    Article  Google Scholar 

  26. D. M. Hotho, J. de Bruijne, M. Spaan, et al., J. Viral Hepat. 20, e78 (2013).

    Article  Google Scholar 

  27. E. Herrmann, S. Zeuzem, C. Sarrazin, et al., Antivir.Ther. 11, 371 (2006).

    Google Scholar 

  28. M. Reiser, H. Hinrichsen, Y. Benhamou, et al., Hepatology 41, 832 (2005).

    Article  Google Scholar 

  29. S. D. Seiwert, S. W. Andrews, Y. Jiang, et al., Antimicrob. Agents Chemother. 2, 4432 (2008).

    Article  Google Scholar 

  30. S. R. Lim, X. Qin, S. Susser, et al., Antimicrob. Agents Chemother. 56, 271 (2012).

    Article  Google Scholar 

  31. N. Forestier, D. Larrey, D. Guyader, et al., J. Hepatol. 54, 1130 (2011).

    Article  Google Scholar 

  32. P. Halfon and S. Locarnini, J. Hepatol. 55, 192 (2011).

    Article  Google Scholar 

  33. E. Foy, K. Li, R. Sumpter Jr., et al., Proc. Natl. Acad. Sci. USA 102, 2986 (2005).

    Article  ADS  Google Scholar 

  34. L. Lu, T. J. Pilot-Matias, K. D. Stewart, et al., Antimicrob. Agents Chemother. 48, 2260 (2004).

    Article  Google Scholar 

  35. C. Lin, C. A. Gates, B. G. Rao, et al., J. Biol. Chem. 280, 36784 (2005).

    Article  Google Scholar 

  36. C. Lin, K. Lin, Y. P. Luong, et al., J. Biol. Chem. 279, 17508 (2004).

    Article  Google Scholar 

  37. M. Berenguer and F. X. Lorez-Labrador, Virus Adapt. Treatm. 3, 7 (2011).

    Google Scholar 

  38. X. Tong, R. Chase, A. Skelton, et al., Antiviral Res. 70, 28 (2006).

    Article  Google Scholar 

  39. X. Tong, S. Bogen, R. Chase, et al., Antiviral Res. 77, 177 (2008).

    Article  Google Scholar 

  40. M. Cubero, J. I. Esteban, T. Otero, et al., Virology 370, 237 (2008).

    Article  Google Scholar 

  41. T. Kuntzen, J. Timm, A. Berical, et al., Hepatology 48, 1769 (2008).

    Article  Google Scholar 

  42. D. J. Bartels, Y. Zhou, E. Z. Zhang, et al., J. Infect. Dis. 198, 800 (2008).

    Article  Google Scholar 

  43. J. Guedj, H. Dahari, L. Rong, et al., Proc. Natl. Acad. Sci. USA 110, 3991 (2013).

    Article  ADS  Google Scholar 

  44. L. Rong, R. M. Ribeiro, and A. S. Perelson, Bull. Math. Biol. 74, 1789 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  45. L. Rong, J. Guedj, H. Dahari, et al., PLoS Comput. Biology. 9, e1002959 (2013).

    Article  MathSciNet  ADS  Google Scholar 

  46. L. Rong, H. Dahari, R. M. Ribeiro, and A. S. Perelson, Sci. Transl. Med. 2, 30ra32 (2010).

    Article  Google Scholar 

  47. B. S. Adiwijaya, E. Herrmann, B. Hare, et al., PLoSComput. Biol. 6, e1000745 (2010).

    MathSciNet  Google Scholar 

  48. H. Dahari, R. M. Ribeiro, C. M. Rice, and A. S. Perelson, J. Virol. 81, 750 (2007).

    Article  Google Scholar 

  49. J. Nakabayashi, J. Theor. Biol. 300, 110 (2012).

    Article  MathSciNet  Google Scholar 

  50. E. L. Mishchenko, K. D. Bezmaternykh, V. A. Likhoshvai, et al., J. Bioinform. Comput. Biol. 5, 593 (2007).

    Article  Google Scholar 

  51. K. L. Berger and G. Randall, Commun. Integr. Biol. 2, 471 (2009).

    Article  Google Scholar 

  52. E. L. Mishchenko, N. V. Ivanisenko, I. R. Akberdin, et al., Vavilov. Zh. Genet. Selekts. 16, 339 (2012).

    Google Scholar 

  53. N. Appel, U. Herian, and R. Bartenschlager, J. Virol. 79, 896 (2005).

    Article  Google Scholar 

  54. X. Tong and B. A. Malcolm, Virus. Res. 115, 122 (2006).

    Article  Google Scholar 

  55. D. Quinkert, R. Bartenschlager, and V. Lohmann, J. Virol. 79, 13594 (2005).

    Article  Google Scholar 

  56. D. Egger, B. Wölk, R. Gosert, et al., J. Virol. 76, 5974 (2002).

    Article  Google Scholar 

  57. J. Aligo, S. Jia, D. Manna, and K. V. Konan, Virology 393, 68 (2009).

    Article  Google Scholar 

  58. S. Reiss, I. Rebhan, P. Backes, et al., Cell Host Microbe 9, 32 (2011).

    Article  Google Scholar 

  59. M. V. Flores, J. Strawbridge, G. Ciaramella, and R. Corbau, Biochim. Biophys. Acta 1794, 1441 (2009).

    Article  Google Scholar 

  60. M. Komorowski, M. J. Costa, D. A. Rand, and M. P. Stumpf, Proc. Natl. Acad. Sci. USA 108, 8645 (2011).

    Article  ADS  Google Scholar 

  61. T. Pietschmann, V. Lohmann, G. Rutter, et al., J. Virol. 75, 1252 (2001).

    Article  Google Scholar 

  62. Y. Li, T. Masaki, D. Yamane, et al., Proc. Natl. Acad.Sci. USA 110, 1881 (2013).

    Article  ADS  Google Scholar 

  63. C. Lin, B. M. Pragai, A. Grakoui, et al., J. Virol. 68, 8147 (1994).

    Google Scholar 

  64. K. Kozlov and A. Samsonov, J. Supercomputing 57, 172 (2011).

    Article  Google Scholar 

  65. K. Kozlov, S. Surkova, E. Myasnikova, et al., PLoS Comput. Biology 8, e1002635 (2012).

    Article  Google Scholar 

  66. R. Storn and K. Price, Technical Report TR-95-012. ICSI (1995).

    Google Scholar 

  67. B. Wölk, B. Büchele, D. Moradpour, and C. M. Rice, J. Virol. 82, 10519 (2008).

    Article  Google Scholar 

  68. D. M. Jones, A. H. Patel, P. Targett-Adams, and J. McLauchlan, J. Virol. 83, 2163 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ivanisenko.

Additional information

Original Russian Text © N.V. Ivanisenko, E.L. Mishchenko, I.R. Akberdin, P.S. Demenkov, V.A. Likhoshvai, K.N. Kozlov, D.I. Todorov, M.G. Samsonova, A.M. Samsonov, N.A. Kolchanov, V.A. Ivanisenko, 2013, published in Biofizika, 2013, Vol. 58, No. 5, pp. 758–774.

Editor’s Note: I certify that this is a closest equivalent of the original publication with all its factual statements and terminology, phrasing and style; English title and Abstract provided by authors. A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanisenko, N.V., Mishchenko, E.L., Akberdin, I.R. et al. Replication of the subgenomic hepatitis C virus replicon in the presence of the NS3 protease inhibitors: a stochastic model. BIOPHYSICS 58, 592–606 (2013). https://doi.org/10.1134/S0006350913050059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913050059

Keywords

Navigation