Skip to main content
Log in

Alpha-amino acid ester hydrolases: Properties and applications

  • Problems and Prospects
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The review describes two major groups of α-amino acid ester hydrolases (AEHs)—enzymes with a similar active center structure, which determines their unique specificity to esters containing an amino group in the α position to the carbonyl. The first group comprises microbial AEHs of the β-lactam acylase type. Technical biocatalysts based on this group of enzymes are used for the production of semi-synthetic amino-β-lactam antibiotics. The second AEH group includes eukaryotic valacyclovirases, which activate in vivo a number of antiviral and anticancer prodrugs. The directed activity of these enzymes is used for the development of target pharmaceutical preparations for the therapy of viral and oncological diseases. The review summarizes and compares the available data on the structure and properties, substrate specificity, and the kinetic parameters of enzymes of these two groups. Experiments identifying the AEH active site and providing the molecular basis for the unique specificity of these enzymes are discussed. The data from the available scientific and patent publications concerning the aminopenicillin and aminocephalosporin synthesis catalyzed by β-lactam acylase AEHs are reviewed and systematized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEH:

α-amino acid ester hydrolase

7-ADCA:

7-aminodesacetoxycephalosporanic acid

6-APA:

6-aminopenicillanic acid

7-ACA:

7-aminocephalosporanic acid

D-PG:

D-phenylglycine

D-HPG:

D-p-hydroxyphenylglycine

BPHL:

biphenyl hydrolase-like protein

VACV:

valacyclovir

VACVase:

valacyclovirase

hVACVase, rVACVase:

human or rat valacyclovirase, respectively

k cat :

catalytic constant

Km :

Michaelis constant

PEG:

polyethylene glycol

CLEAs:

cross-linked enzyme aggregates

References

  1. Takahashi, T., Yamazaki, Y., and Kato, K., Biochem. J., 1974, vol. 137, pp. 497–503.

    PubMed  CAS  Google Scholar 

  2. Nys, P.S., Kurochkina, V.B., Sklyarenko, A.V., and Veinberg, G.A., Antibiot. Khimioter., 2000, vol. 45, no. 11, pp. 36–42.

    PubMed  CAS  Google Scholar 

  3. Schmidt, F.R., in The Mycota, 2nd ed., Hofrichter, M., Ed., Berlin Heidelberg: Springer-Verlag, 2010, vol. 10, Ch. 5, pp. 101–121.

    Google Scholar 

  4. DSM internet site: www.dsm.com/en-US/cworld/pub-lic/home/pages/home.jsp

  5. Barends, T.R.M., Polderman-Tijmes, J.J., Jekel, P.A., Williams, C., Wybenga, G., Janssen, D.B., and Dijkstra, B.W., J. Biol. Chem., 2006, vol. 281, pp. 5804–5810.

    Article  PubMed  CAS  Google Scholar 

  6. Blum, J.K., and Bommarius, A.S., J. Mol. Catal. B: Enzym., 2010, vol. 67, pp. 21–28.

    Article  CAS  Google Scholar 

  7. Burnette, T.C., Harrington, J.A., Rear-Don, J.E., Merrill, B.M., and de Miranda, P., J. Biol. Chem., 1995, vol. 270, pp. 15827–15831.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, I., X.-Y. Chu, Kim, S., Provoda, C.J., Lee, K-D., and Amidon, G.L., J. Biol. Chem., 2003, vol. 278, pp. 25348–25356.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, I., Song, X., Vig, B.S., Mittal, S., Shin, H.C., Lorenzi, P.J., and Amidon, G.L., Mol. Pharmaceutics, 2004, vol. 1, pp. 117–127.

    Article  CAS  Google Scholar 

  10. Lai, L., Z. Xu, J. Zhou, K-D. Lee, G.L. Amidon, J. Biol. Chem., 2008, vol. 283, pp. 9318–9327.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi, T., Yamazaki, Y., Kato, K., and Isono, M., J. Am. Chem. Soc., 1972, vol. 94, pp. 4035–4037.

    Article  PubMed  CAS  Google Scholar 

  12. Kato, K., Kato, K., Kawahara, K., and Takahashi, T., Agric. Biol. Chem., 1980, vol. 44, pp. 821–825.

    Article  CAS  Google Scholar 

  13. Okachi, R., Okachi, R., Kato, K., Miyamura, Y., and Nara, T., Agric. Biol. Chem., 1973, vol. 37, pp. 1953–1957.

    Article  CAS  Google Scholar 

  14. Okachi, R., Okachi, R., and Nara, T., Agric. Biol. Chem., 1973, vol. 37, pp. 2797–2804.

    Article  CAS  Google Scholar 

  15. Shimizu, M., Masuike, T., Fujita, H., Kimura, K., Okachi, R., and Nara, T., Agric. Biol. Chem., 1975, vol. 39, pp. 1225–1232.

    Article  CAS  Google Scholar 

  16. Kawamori, M., Hashimoto, Y., Katsumata, R., Okachi, R., and Takayama, K., Agric. Biol. Chem., 1983, vol. 47, pp. 2503–2509.

    Article  CAS  Google Scholar 

  17. Wang, M., Wang, Z., Yue, H., Han, W., and Jiao, Q., Wei Sheng Wu Xue Bao, 1990, vol. 30, pp. 238–241.

    PubMed  CAS  Google Scholar 

  18. Penzikova, G.A., Oreshina, M.G., and Kuznetsova, V.D., Antibiotiki, 1980, vol. 25, pp. 905–909.

    PubMed  CAS  Google Scholar 

  19. Ryu, Y.W., and Ryu, D.Y., Enzyme Microb. Technol., 1987, vol. 9, pp. 339–344.

    Article  CAS  Google Scholar 

  20. Kim, D.J. and Byun, S.M., Biochim. Biophys. Acta, Prot. Struc. Mol. Enzymol., 1990, vol. 1040, pp. 12–18.

    Article  CAS  Google Scholar 

  21. Krest’yanova, I.N., Uvarov, N.N., Rudenskaya, G.N., Tsibanov, V.V., Vasil’eva, L.I., and Stepanov, V.M., Biokhimiya, 1990, vol. 55, pp. 12–18.

    Google Scholar 

  22. Blinkovsky, A.M. and Markaryan, A.N., Enzyme Microb. Technol., 1993, vol. 15, pp. 965–973.

    Article  PubMed  CAS  Google Scholar 

  23. Zaslavskaya, P.L., Chekalina, I.V., Igans, D.N., Bartoshevich, Y.E., and Nys, P.S., Biotechnol. Appl. Biochem., 1993, vol. 18, pp. 299–309.

    PubMed  CAS  Google Scholar 

  24. Choi, W.G., Lee, S.B., and Ryu, D.Y., Biotechnol. Bioeng, 1981, vol. 23, pp. 361–371.

    Article  CAS  Google Scholar 

  25. Ryu, Y.W., and Ryu, D.Y., Enzyme Microb. Technol., 1988, vol. 10, pp. 239–245.

    Article  CAS  Google Scholar 

  26. Takahashi, T., Kato, K., Yamazaki, Y., and Isono, M., Jpn. J. Antibiot., 1977, vol. 30, pp. 230–S238.

    PubMed  CAS  Google Scholar 

  27. Kato, K., K. Kawahara, T. Takahashi, A. Kakinuma, Agric. Biol. Chem., 1980, vol. 44, pp. 1069–1074.

    Article  CAS  Google Scholar 

  28. Kato, K., Kawahara, K., Takahashi, T., and Kakinuma, A., Agric. Biol. Chem., 1980, vol. 44, pp. 1075–1081.

    Article  CAS  Google Scholar 

  29. Kato, K. and Kakinuma, A., Agric. Biol. Chem., 1980, vol. 44, pp. 1663–1664.

    Article  CAS  Google Scholar 

  30. Nam, D.H. and C. Kim, Biothechnol. Bioeng., 1985, vol. 27, pp. 953–960.

    Article  CAS  Google Scholar 

  31. Okubo, A., Nagaoka, K., Yokota, S., Konishi, E., and Kakutani, T., Int. Patent No. WO02086127, C12N15/55, C12N15/86, C12N15/88, 2002.

  32. Kim, D.J. and Byun, S.M., Biochem. Biophys. Res. Commun., 1990, vol. 166, pp. 904–908.

    Article  PubMed  CAS  Google Scholar 

  33. Kuwana, N., Kawamura T., and Fukumura, M., US Patent No. US3716454, A61K31/43, A61K35/74, C07D499/68, C12P1/04, C12P37/02, A61K, C07D, (IPC1-7): C12D9/00, 1973.

  34. Nam, D.H., and Ryu, D.D.Y., Kor. J. Appl. Microbiol. Biotechnol., 1988, vol. 16, pp. 363–368.

    CAS  Google Scholar 

  35. Alonso, J. and Garcia, J.L., Microbiology, 1996, vol. 142, pp. 2951–2957.

    Article  PubMed  CAS  Google Scholar 

  36. Polderman-Tijmes, J.J., Jekel, P.A., de Vries, E.J., van Merode, A.E.J., Floris, R., van der Laan, J.-M., Sonke, T., and Janssen, D.B., Appl. Environ. Microbiol., 2002, vol. 68, pp. 211–218.

    Article  PubMed  CAS  Google Scholar 

  37. Polderman-Tijmes, J.J., Jekel, P.A., Jeronimus-Stratingh, C.M., Bruins, A.P., van der Laan, J.-M., Sonke, T., and Janssen, D.B., J. Biol. Chem., 2002, vol. 277, pp. 28474–28482.

    Article  PubMed  CAS  Google Scholar 

  38. Van der Laan, J.-M., Polderman-Tijmes, J.J., and Barends, T.R.M., Int. Patent No. WO02086111, C12N15/55, C12N9/18, (IPC1-7): C12N9/00, 2002.

  39. Barends, T.R.M., Polderman-Tijmes, J.J., Jekel, P.A., Hensgens, C.M.H., de Vries, E.J., Janssen, D.B., and Dijkstra, B.W., J. Biol. Chem., 2003, vol. 278, pp. 23076–23084.

    Article  PubMed  CAS  Google Scholar 

  40. da Silva, C.R., Ferro, J.A., Reinach, F.C., Farah, C.S., and Furlan, L.R., Nature, 2002, vol. 417, pp. 459–463.

    Article  PubMed  Google Scholar 

  41. Barends, T.R.M., Hensgens, C.M.H., Polderman-Tijmes, J.J., Jekel, P.A., de Vries, E.J., Janssen, D.B., and Dijkstra, B.W., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2003, vol. 59, pp. 158–160.

    Article  Google Scholar 

  42. Barends, T.R.M. and Dijkstra, B.W., Acta Crystallogr., Sect. D: Biol. Crystallogr., 2003, vol. 59, pp. 2237–2241.

    Article  Google Scholar 

  43. Barends, T.R.M., Yoshida, H., and Dijkstra, B.W., Curr. Opin. Biotechnol., 2004, vol. 15, pp. 356–363.

    Article  PubMed  CAS  Google Scholar 

  44. Zarubina, S.A. Uporov, I.V., Fedorchuk, E.A., Fedorchuk, V.V., Sklyarenko, A.V., Yarotskii, S.V. and Tishkov, V.I., Acta Naturae, 2013, vol. 5, no. 3 (in press).

    Google Scholar 

  45. Puente, X.S. and Lopez-Oten, C., J. Biol. Chem., 1995, vol. 270, pp. 12926–12932.

    Article  PubMed  CAS  Google Scholar 

  46. Kim, I., Crippen, G.M., and Amidon, G.L., Mol. Pharmaceutics, 2004, vol. I, pp. 434–446.

    Article  Google Scholar 

  47. Fernandez-Lafuente, R., Hernandez-Justiz, O., Mateo, C., Terreni, M., Alonso, J., Garsia-Lopez, J.L., Moreno, M.A., and Guisan, J.M., J. Mol. Calal. B: Enzym., 2001, vol. 11, pp. 633–638.

    Article  CAS  Google Scholar 

  48. Deaguero, A.L., Blum, J.K., and Bommarius, A.S., Biocatalytic Synthesis of p-Lactam Antibiotics: Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, Flickinger, M.C., Ed., New York: John Wiley and Sons, 2010, pp. 1–32.

  49. Krest’yanova, I.N., Vasil’eva, L.I., Denyakina, E.K., Petrova, L.I., Penzikova, G.A., Bartoshevich, Yu.E., and Neklyudov, A.D., Prikl. Biokhim. Mikrobiol., 1985, vol. 21, no. 1, pp. 48–55.

    Google Scholar 

  50. Nam, D.H., Ryu, Y.W., and Ryu, D.D.Y., J. Microbiol. Biotechnol., 2001, vol. 11, pp. 329–332.

    CAS  Google Scholar 

  51. Rhee, D.K, Lee, S.B., Rhee, J.S., Ryu, D.D.Y., and Hospodka, J., Biothechnol. Bioeng., 1980, vol. 22, pp. 1237–1247.

    Article  CAS  Google Scholar 

  52. Hyun, C.K., Choi, J.H., Kim, J.H., and Ryu, D.D.Y., Biothechnol. Bioeng., 1993, vol. 41, pp. 654–658.

    Article  CAS  Google Scholar 

  53. Duggleby, H.J., Tolley, S.P., Hill, C.P., Dodson, E.J., and Moody, P.C.E., Nature, 1995, vol. 373, pp. 264–268.

    Article  PubMed  CAS  Google Scholar 

  54. Dodson, G. and Wlodawer, A., Trends Biochem. Sci., 1998, vol. 23, pp. 347–352.

    Article  PubMed  CAS  Google Scholar 

  55. Hemandez-Justiz, O., Terreni, M., Pagani, G., Garcia, J.L., Guisan, J.M., and Fernandez-Lafuente, R., Enzyme Microb. Technol., 1999, vol. 25, pp. 336–343.

    Article  Google Scholar 

  56. Fernandez-Lafuente, R., Hernandez-Justiz, O., Mateo, C., Terreni, M., Fernandez-Lorente, G., Moreno, M.A., Alonso, J., Garcia-Lopez, J. L., and Guisan, J.M., Biomacromolecules, 2001, vol. 2, pp. 95–104.

    Article  PubMed  CAS  Google Scholar 

  57. Lee, D.K. and Yoo, D.Y., Korean Patent No. KR810000048, C12P35/04, (IPC1-7): C12P35/04, 1981.

  58. Kurochkina, V.B. and Nys, P.S., Antibiot. Khimioter., 1999, vol. 44, no. 8, pp. 6–11.

    PubMed  CAS  Google Scholar 

  59. Kurochkina, V.B. and Nys, P.S., Biocatal. Biotransform., 2002, vol. 20, pp. 11–35.

    Article  Google Scholar 

  60. Nys, P.S, Kurochkina, V.B., Sklyarenko, A.V., and Egorov, A.M., RF Patent No. RU2221046, C12P37/04, C12N11/02, C12N9/14, C12N11/02, C12RL19, C12RL38, C12RL64, 2004.

  61. Sklyarenko, A.V., Kurochkina, V.B., Satarova, D.E., and Krest’yanova, I.N, RF Patent No. RU2381273,C12Nll/00, C12N11/02,C12N19/14, 2009.

  62. Xiong Xui, Sklyarenko, A.V., Jiang Yong., Kurochkina, V.B., Hu Yuanhui, and Satarova, D.E., Chinese Patent No. CN101525603, C12N11/02, C12N9/16, C12P35/00, C12P37/00, 2009.

  63. Hashimoto, Y., Kimura, K., Kobayashi, S., and Matsukuma, I., US Patent No. US4332896, C07D463/00, C12P17/18, (IPC1-7): C12P17/18, 1982.

  64. Ivankin, A.N. and Neklyudov, A.D., Appl. Biochem. Microbiol., 2000, vol. 36, pp. 258–261.

    Article  Google Scholar 

  65. Willner, D. and Crast, L.B., Canadian Patent No. CA1044627, C12D9/00, 1978.

  66. Van der Does, T., Int. Patent No. WO0220819, C12P35/00, C12P37/00, C12P39/00, (IPC1-7): C12P35/02, C12P35/04, C12P37/04, C12P37/06, C12P39/00, 2002.

  67. Daka, D., Kim, C.H., Kasahara, S., and Hyun, C.K., Korean Patent No. KR910004952B, C12P35/04, (IPCl-7):C01B33/28, C12P35/04, 1991.

  68. Hyun, C.K., Kim, J.H., and Ryu, D.D.Y., Biotechnol. Bioeng., 1993, vol. 42, pp. 800–806.

    Article  PubMed  CAS  Google Scholar 

  69. Takeda Chemical Industries Ltd., British Patent GB1382255, C07D499/12, C07D499/64, C07D499/66, 1975.

  70. Van der Laken, C.J., European Patent EP0339751, C12P37/04, (IPC):C12P37/04, C12P41/00, C12R1/02, 1989.

  71. Kurochkina, V.B., Sklyarenko, A.V., Satarova, J.E., and Yarotsky, S.V., Bioprocess Biosyst. Eng., 2011, vol. 34, pp. 1103–1117.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sklyarenko.

Additional information

Original Russian Text © V.B. Kurochkina, A.V. Sklyarenko, O.V. Berezina, S.V. Yarotskii, 2012, published in Biotekhnologiya, 2012, No. 5, pp. 8–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurochkina, V.B., Sklyarenko, A.V., Berezina, O.V. et al. Alpha-amino acid ester hydrolases: Properties and applications. Appl Biochem Microbiol 49, 672–694 (2013). https://doi.org/10.1134/S0003683813080036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683813080036

Keywords

Navigation