Skip to main content
Log in

Optimization of cultural conditions for the production of antifungal chitinase by Streptomyces sporovirgulis

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Actinomycetes were screened from soil in the centre of Poland on chitin medium. Amongst 30 isolated strains one with high activity of chitinase was selected. It was identified as Streptomyces sporovirgulis. Chitinase activity was detected from the second day of cultivation, then increased gradually and reached maximum after 4 days. The maximum chitinase production was observed at pH 8.0 and 25–30°C in the medium with sodium caseinate and asparagine as carbon and nitrogen sources and with shrimp shell waste as inducer of enzyme. Chitinase of S. sporovirgulis was purified from a culture medium by fractionation with ammonium sulphate as well as by chitin affinity chromatography. The molecular weight of the enzyme was 27 kDa. The optimum temperature and pH for the chitinase were 40°C and pH 8.0. The enzyme activity was characterised by high stability at the temperatures between 35 and 40°C after 240 min of preincubation. The activity of the enzyme was strongly inhibited in the presence of Pb2+, Hg2+ and stabilized by the ions Mg2+. Purified chitinase from S. sporovirgulis inhibited growth of fungal phytopathogen Alternaria alternata. Additionally, the crude chitinase inhibited the growth of potential phytopathogens such as Penicillium purpurogenum and Penillium sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gohel, V., Singh, A., Vimal, M., Ashwini, P., and Chhatpar, H.S., Afr. J. Biotechnol., 2006, vol. 5, no. 2, pp. 54–72.

    Google Scholar 

  2. Patil, R.S., Ghormade, V., and Deshpande, M.V., Enzyme Microb. Tech., 2000, vol. 26, no. 7, pp. 473–483.

    Article  CAS  Google Scholar 

  3. Dahiya, N., Tewari, R., and Hoondal, G.S., Appl. Microbiol. Biotechnol., 2006, vol. 71, no. 6, pp. 773–782.

    Article  PubMed  CAS  Google Scholar 

  4. Dahiya, N., Tewari, R., Tiwari, R.P., and Hoondal, G.S., World J. Microbiol. Biotechnol., 2005, vol. 21, nos. 8–9, pp. 1611–1616.

    Article  CAS  Google Scholar 

  5. Strange, R.N. and Scott, P.R., Annu. Rev. Phytopathol., 2005, vol. 43, pp. 83–116.

    Article  PubMed  CAS  Google Scholar 

  6. Budi, S.W., van Tuinen, D., Arnould, C., Dumas-Gaudut, E., Gianinazzi-Pearson, V., and Gianinazzi, S., Appl. Soil Ecol., 2000, vol. 15, no. 2, pp. 191–199.

    Article  Google Scholar 

  7. Lingappa, Y. and Lockwood, J.L., Phytopatology, 1962, vol. 52, pp. 317–323.

    Google Scholar 

  8. Williams, S.T., Goodfellow, M., Alderson, G., Wellington, E.M.H., Sneath, P.H.A., and Sackin, M., J. Gen. Microbiol., 1983, vol. 129, no. 6, pp. 1743–1813.

    PubMed  CAS  Google Scholar 

  9. Watanabe, N., Kodama, Y., and Harayama, S., J. Microbiol. Methods, 2001, vol. 44, no. 3, pp. 253–262.

    Article  PubMed  CAS  Google Scholar 

  10. Kutchma, A.J., Roberts, M.A., Knaebel, D.B., and Crawford, D.L., Biotechniques, 1998, vol. 24, no. 3, pp. 452–456.

    PubMed  CAS  Google Scholar 

  11. Escott, G.M., Hearn, V.M. and Adams, D.J., Microbiology, 1998, vol. 144, no. 6, pp. 1575–1581.

    Article  PubMed  CAS  Google Scholar 

  12. Bradford, M.M., Anal. Biochem., 1976, vol. 72, nos. 1–2, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  13. Laemmli, U.K., Nature, 1970, vol. 227, pp. 680–688.

    Article  PubMed  CAS  Google Scholar 

  14. Roberts, W.K. and Selitrennikoff, C.P., J. Gen. Microbiol., 1988, vol. 134, no. 1, pp. 169–176.

    CAS  Google Scholar 

  15. Barnett, H.L. and Barry, B.H., Illustrated Genera of Imperfect Fungi, 4th ed., St. Paul: The American Phytopathological Society, 1998.

    Google Scholar 

  16. Fassatiova, O., Microscopic Fungi in Technical Microbiology, Warsaw: Scientific Publications Technical., 1983.

    Google Scholar 

  17. Kwas’na, H., Che kowski, J., and Zajkowski, P., Fungi (Mycota), Warsaw-Krakow: Polish Scientific Publ., 1991, vol. 22.

  18. Piontek, M., Mould Fungi, Zielona Góra: Publisher’s Atlas by the University of Zielona Góra, 1999.

    Google Scholar 

  19. Mane, U.V. and Deshmukh, A.M., Afr. J. Biotechnol., 2009, vol. 8, no. 23, pp. 6617–6620.

    CAS  Google Scholar 

  20. Margino, S., Nugroho, A.J., and Asmara, W., Ind. J. Biotechnol., 2010, vol. 15, no. 1, pp. 29–36.

    Google Scholar 

  21. Shanmugaiah, V., Mathivanan, N., Balasubramanian, N., and Manoharan, P.T., Afr. J. Biotechnol., vol. 7, no. 15, pp. 2562–2568.

  22. Hosny, M.S., El-Shayeb, N.A., Abood, A., and Abdel-Fattah, A.M., Aust. J. Basic Appl. Sci., 2010, vol. 4, no. 4, pp. 615–623

    CAS  Google Scholar 

  23. Chang, W.T., Chen, Y.C., and Jao, C.L., Biores. Technol., 2007, vol. 98, no. 6, pp. 1224–1230.

    Article  CAS  Google Scholar 

  24. Rattanakit, N., Plikomol, A., Yano, S., Wakayama, M., and Tachiki, T., J. Biosc. Bioeng., 2002, vol. 93, no. 6, pp. 550–556.

    CAS  Google Scholar 

  25. Mukherjee, G. and Sen, S.K., Curr. Microbiol., 2006, vol. 53, no. 4, pp. 265–269.

    Article  PubMed  CAS  Google Scholar 

  26. Nawani, N.N., and Kapadnis, B.P., J. Appl. Microbiol., 2001, vol. 90, no. 5, pp. 803–808.

    Article  PubMed  CAS  Google Scholar 

  27. Aly, M.M., Tork, S., Al-Garni, S.M., and Kabli, S.A., Ann. Microbiol., 2011, vol. 61, no. 3, pp. 453–461.

    Article  CAS  Google Scholar 

  28. Jiang, X., Chen, D., Hong, S., Wang, W., Chen, S., and Zou, S., Carbohydr. Polym., 2012, vol. 87, no. 4, pp. 2409–2415.

    Article  CAS  Google Scholar 

  29. Bhattacharya, D., Nagpure, A., and Gupta, R.K., Crit. Rev. Biotechnol., 2007, vol. 27, no. 1, pp. 21–28.

    Article  PubMed  CAS  Google Scholar 

  30. Rabeeth, M., Anitha, A., and Srikanth, G., Pakistan J. Biol. Sci., 2011, vol. 14, no. 16, pp.788–797.

    Article  CAS  Google Scholar 

  31. Kim, K.J, Yang, Y.J, and Kim, J.G., J. Biochem. Mol. Biol., 2003, vol. 36, no. 2, pp. 185–189.

    Article  PubMed  CAS  Google Scholar 

  32. Bhushan, B. and Hoondal, G.S., Biotechnol. Lett., 1998, vol. 20, no. 2, pp. 157–159.

    Article  CAS  Google Scholar 

  33. Vaidya, R.J., Shah, I.M., Vyas, P.R., and Chhatpar, H.S., World J. Microbiol. Biotechnol., 2001, vol. 17, no. 7, pp. 691–696.

    Article  CAS  Google Scholar 

  34. Baharlouei, A., Sharifi-Sirchi, G.R., and Shahidi Bonjar, G.H., Philipp. Agric. Scientist., 2011, vol. 93, no. 4, pp. 439–445.

    Google Scholar 

  35. Ghasemi, S., Ahmadian, G., Jelodar, N.B., Rahimian, H., Ghandili, S., Dehestani, A., and Shariati, P., World J. Microbiol. Biotechnol., 2010, vol. 26, no. 8, pp. 1437–1443.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Swiontek Brzezinska.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swiontek Brzezinska, M., Jankiewicz, U. & Lisiecki, K. Optimization of cultural conditions for the production of antifungal chitinase by Streptomyces sporovirgulis . Appl Biochem Microbiol 49, 154–159 (2013). https://doi.org/10.1134/S0003683813020014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683813020014

Keywords

Navigation