Skip to main content
Log in

Specific features of the electrical properties in partially graphitized porous biocarbons of beech wood

Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical and galvanomagnetic properties of partially graphitized highly porous bioC(Ni) biocarbon matrices produced by pyrolysis (carbonization) of beech wood at temperatures T carb = 850–1600°C in the presence of a Ni-containing catalyst have been studied in comparison with their microstructural features. The temperature dependences of the resistivity, the magnetoresistance, and the Hall coefficient have been measured in the temperature range of 4.2–300 K in magnetic fields to 28 kOe. It has been shown that an additional graphite phase introduction into samples with T carb ≥ 1000°C results in an increase in the carrier mobility by a factor of 2–3, whereas the carrier (hole) concentration remains within ~1020 cm−3, as in biocarbons obtained without catalyst. An analysis of experimental data has demonstrated that the features of the conductivity and magnetoresistance of these samples are described by quantum corrections related to their structural features, i.e., the formation of a globular graphite phase of nano- and submicrometer sizes in the amorphous matrix. The quantum corrections to the conductivity decrease with increasing carbonization temperature, which indicates an increase in the degree of structure ordering and is in good agreement with microstructural data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).

    Article  Google Scholar 

  2. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  3. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1 (1), 56 (2004).

    Article  Google Scholar 

  4. I. A. Smirnov, T. S. Orlova, B. I. Smirnov, S. W. Wlosewicz, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 51 (11), 2264 (2009).

    Article  ADS  Google Scholar 

  5. L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, and K. T. Faber, Phys. Solid State 52 (7), 1348 (2010).

    Article  ADS  Google Scholar 

  6. A. K. Kercher and D. C. Nagle, Carbon 40, 1321 (2002).

    Article  Google Scholar 

  7. J. M. Qian, J. P. Wang, and Z. H. Jin, Mater. Sci. Eng., A 371 (1–2), 229 (2004).

    Article  Google Scholar 

  8. V. S. Kaul, K. T. Faber, R. Sepúlveda, A. R. de Arellano Lopez, and J. Martínez-Fernández, Mater. Sci. Eng., A 428 (1–2), 225 (2006).

    Article  Google Scholar 

  9. F. M. Varela-Feria, J. Martínez-Fernández, A. R. de Arellano-López, and M. Singh, J. Eur. Ceram. Soc. 22 (14–15), 2719 (2002).

    Article  Google Scholar 

  10. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11 (2006).

    Article  Google Scholar 

  11. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).

    Article  Google Scholar 

  12. M. T. Johnson and K. T. Faber, J. Mater. Res. 26 (1), 18 (2011).

    Article  ADS  Google Scholar 

  13. M. T. Johnson, A. S. Childers, J. Ramirez-Rico, H. Wang, and K. T. Faber, Composites, Part A 53, 182 (2013).

    Article  Google Scholar 

  14. A. Gutiérrez-Pardo, J. Ramírez-Rico, A. R. de Arellano-López, and J. Martínez-Fernández, J. Mater. Sci. 49, 22 (2014).

    Article  Google Scholar 

  15. A. Gutiérrez-Pardo, J. Ramírez-Rico, R. CabezasRodríguez, and J. Martínez-Fernández, J. Power Sources 278, 18 (2015).

    Article  Google Scholar 

  16. H. M. Cheng, H. Endo, T. Okabe, K. Saito, and G. B. Zheng, J. Porous Mater. 6 (3), 233 (1999).

    Article  Google Scholar 

  17. A. Oya and H. Marsh, J. Mater. Sci. 17 (2), 309 (1982).

    Article  ADS  Google Scholar 

  18. A. K. Kercher and D. C. Nagle, Carbon 41, 15 (2003).

    Article  Google Scholar 

  19. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de ArellanoLopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Phys. Solid State 48 (3), 441 (2006).

    Article  ADS  Google Scholar 

  20. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 50 (12), 2245 (2008).

    Article  ADS  Google Scholar 

  21. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, T. E. Wilkes, and K. T. Faber, Phys. Solid State 52 (6), 1115 (2010).

    Article  ADS  Google Scholar 

  22. N. F. Kartenko, T. S. Orlova, L. S. Parfen’eva, B. I. Smirnov, and I. A. Smirnov, Phys. Solid State 56 (11), 2348 (2014).

    Article  ADS  Google Scholar 

  23. R. Sinclair, T. Itoh, and R. Chin, Microsc. Microanal. 8 (4), 288 (2002).

    Article  ADS  Google Scholar 

  24. M. Sevilla, C. Sanchis, T. Valdés-Solis, E. Morallón, and A. B. Fuertes, J. Phys. Chem. C 111 (27), 9749 (2007).

    Article  Google Scholar 

  25. F. J. Derbyshire, A. E. B. Presland, and D. L. Trimm, Carbon 13 (2), 111 (1975).

    Article  Google Scholar 

  26. C. Yokokawa, K. Hosokawa, and Y. Takegami, Carbon 5 (5), 475 (1967).

    Article  Google Scholar 

  27. T. S. Orlova, B. K. Kardashev, B. I. Smirnov, A. Gutierrez-Pardo, J. Ramirez-Rico, and J. Martinez-Fernandez, Phys. Solid State 57 (3), 586 (2015).

    Article  ADS  Google Scholar 

  28. V. V. Popov, T. S. Orlova, and J. Ramirez-Rico, Phys. Solid State 51 (11), 2247 (2009).

    Article  ADS  Google Scholar 

  29. V. V. Popov, T. S. Orlova, E. Enrique Magarino, M. A. Bautista, and J. Martinez-Fernandez, Phys. Solid State 53 (2), 276 (2011).

    Article  ADS  Google Scholar 

  30. B. K. Kardashev, T. S. Orlova, B. I. Smirnov, A. Gutierrez, and J. Ramirez-Rico, Phys. Solid State 55 (9), 1884 (2013).

    Article  ADS  Google Scholar 

  31. V. F. Gantmakher, Electrons and Disorder in Solids (Fizmatizdat, Moscow, 2003; Oxford University Press, Oxford, 2005).

    Google Scholar 

  32. V. V. Popov, T. S. Orlova, J. Ramirez-Rico, A. R. de Arellano-Lopez, and J. Martinez-Fernandez, Phys. Solid State 50 (10), 1819 (2008).

    Article  ADS  Google Scholar 

  33. V. I. Berezkin and V. V. Popov, Phys. Solid State 49 (9), 1803 (2007).

    Article  ADS  Google Scholar 

  34. A. Kawabata, J. Phys. Soc. Jpn. 50, 2461 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Orlova.

Additional information

Original Russian Text © V.V. Popov, T.S. Orlova, A. Gutierrez-Pardo, J. Ramirez-Rico, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 9, pp. 1703–1708.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, V.V., Orlova, T.S., Gutierrez-Pardo, A. et al. Specific features of the electrical properties in partially graphitized porous biocarbons of beech wood. Phys. Solid State 57, 1746–1751 (2015). https://doi.org/10.1134/S1063783415090280

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415090280

Keywords

Navigation