Skip to main content
Log in

Ultraviolet luminescence of Li6Gd(BO3)3: Ce crystals under selective excitation in the region of 4d → 4f transitions

  • Impurity Centers
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The subnanosecond time-resolved ultraviolet luminescence of Li6Gd(BO3)3: Ce crystals under selective excitation by ultrasoft X-rays in the region of the 4d→4f core transitions at temperatures of 7 and 293 K has been investigated for the first time. The performed investigation has revealed the following features: an intense fast component of the luminescence decay kinetics in the subnanosecond range due to the high local density of electronic excitations and the processes of Auger relaxation of the core hole; the modulation of the luminescence excitation spectrum by the “giant resonance” absorption band of the 4d-4f photoionization in the energy range 135–160 eV; and a new broad luminescence band at an energy of 4.44 eV due to the direct radiative recombination between the genetically related electron in the states of the conduction band bottom and hole in the 4f ground state of the Ce3+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. E. van Eijk, Nucl. Tracks Radiat. Meas. 21, 5 (1993).

    Article  Google Scholar 

  2. A. Belsky and J. C. Krupa, Displays 19, 185 (1999).

    Article  Google Scholar 

  3. M. Godlewski, A. J. Zakrzewski, and V. Y. Ivanov, J. Alloys Compd. 300-301, 23 (2000).

    Article  Google Scholar 

  4. J. B. Czirr, US Patent 5 734 166 (March 31, 1998).

  5. J. B. Czirr, G. M. MacGillivray, R. R. MacGillivray, P. J. Seddon, Nucl. Instrum. Methods Phys. Res., Sect. A 424, 15 (1999).

    Article  ADS  Google Scholar 

  6. V. V. Chernikov, M. F. Dubovik, V. P. Gavrilyuk, B. V. Grinyov, L. A. Grin’, T. I. Korshikova, A. N. Shekhovtsov, E. P. Sysoeva, A. V. Tolmachev, and O. V. Zelenskaya, Nucl. Instrum. Methods Phys. Res., Sect. A 498, 424 (2003).

    Article  ADS  Google Scholar 

  7. I. N. Ogorodnikov, S. V. Kudyakov, A. Yu. Kuznetsov, V. Yu. Ivanov, A. V. Kruzhalov, V. A. Maslov, and L. A. Ol’khovaya, Tech. Phys. Lett. 19(7), 431 (1993).

    ADS  Google Scholar 

  8. I. N. Ogorodnikov, V. Yu. Ivanov, A. Yu. Kuznetsov, A. V. Kruzhalov, V. A. Maslov, and L. A. Ol’khovaya, Tech. Phys. Lett. 19(1), 42 (1993).

    ADS  Google Scholar 

  9. A. Yu. Kuznetsov, A. V. Kruzhalov, I. N. Ogorodnikov, and A. B. Sobolev, L. I. Isaenko, Phys. Solid State 41(1), 48 (1999).

    Article  ADS  Google Scholar 

  10. C. T. Garapon, B. Jacquier, J. P. Chaminade, and C. Fouassier, J. Lumin. 34, 211 (1985).

    Article  Google Scholar 

  11. C. T. Garapon, B. Jacquier, Y. Salem, and R. Moncorge, J. Phys., Colloq. 46(C7) C7–141 (1985).

    Article  Google Scholar 

  12. M. Buijs, J. I. Vree, and G. Blasse, Chem. Phys. Lett. 137, 381 (1987).

    Article  ADS  Google Scholar 

  13. J. Sablayrolles, V. Jubera, J.-P. Chaminade, I. Manek- Hönninger, S. Murugan, T. Cardinal, R. Olazcuaga, A. Garcia, and F. Salin, Opt. Mater. 27, 1681 (2005).

    Article  ADS  Google Scholar 

  14. R. P. Yavetskiy, E. F. Dolzhenkova, M. F. Dubovik, T. I. Korshikova, and A. V. Tolmachev, J. Cryst. Growth 276, 485 (2005).

    Article  ADS  Google Scholar 

  15. R. P. Yavetskiy, A. V. Tolmachev, E. F. Dolzhenkova, and V. N. Baumer, J. Alloys Compd. 429, 77 (2007).

    Article  Google Scholar 

  16. I. N. Ogorodnikov, V. A. Pustovarov, S. I. Omel’kov, A. V. Tolmachev, and R. P. Yavetskii, Opt. Spectrosc. 102(1), 60 (2007).

    Article  ADS  Google Scholar 

  17. I. N. Ogorodnikov, V. A. Pustovarov, A. V. Tolmachev, and R. P. Yavetskii, Phys. Solid State 50(9), 1684 (2008).

    Article  ADS  Google Scholar 

  18. I. N. Ogorodnikov, I. N. Sedunova, L. I. Isaenko, and S. A. Zhurkov, Phys. Solid State 54(3), 485 (2012).

    Article  ADS  Google Scholar 

  19. I. N. Ogorodnikov, N. E. Poryvai, V. A. Pustovarov, A. V. Tolmachev, R. P. Yavetskii, and V. Yu. Yakovlev, Phys. Solid State 51(6), 1160 (2009).

    Article  ADS  Google Scholar 

  20. I. N. Ogorodnikov, N. E. Poryvai, I. N. Sedunova, A. V. Tolmachev, and R. P. Yavetskii, Phys. Solid State 53(2), 263 (2011).

    Article  ADS  Google Scholar 

  21. I. N. Ogorodnikov, N. E. Poryvai, I. N. Sedunova, A. V. Tolmachev, and R. P. Yavetskii, Opt. Spectrosc. 110(2), 266 (2011).

    Article  ADS  Google Scholar 

  22. I. N. Ogorodnikov, N. E. Poryvai, I. N. Sedunova, A. V. Tolmachev, and R. P. Yavetskii, Opt. Spectrosc. 111(3), 441 (2011).

    Article  ADS  Google Scholar 

  23. I. N. Ogorodnikov, V. A. Pustovarov, and M. Kirm, Phys. Solid State 46(5), 842 (2004).

    Article  ADS  Google Scholar 

  24. C. U. S. Larsson, A. Beutler, O. Björneholm, F. Federmann, U. Hahn, A. Rieck, S. Verbin, and T. Möller, Nucl. Instrum. Methods Phys. Res., Sect. A 337, 603 (1994).

    Article  ADS  Google Scholar 

  25. R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and J. Hölsä, J. Lumin. 87, 1002 (2000).

    Article  Google Scholar 

  26. A. Yu. Kuznetsov, M. V. Kuznetsov, I. N. Ogorodnikov, A. V. Kruzhalov, and V. A. Maslov, Phys. Solid State 36(3), 465 (1994).

    ADS  Google Scholar 

  27. R. P. Yavetskiy and A. V. Tolmachev, Tech. Phys. Lett. 30(12), 976 (2004).

    Article  ADS  Google Scholar 

  28. F. Yang, S. K. Pan, D. Z. Ding, and G. H. Ren, Cryst. Res. Technol. 44, 141 (2009).

    Article  Google Scholar 

  29. F. Yang, S. K. Pan, D. Z. Ding, X. F. Chen, S. Lu, W. D. Zhang, and G. H. Ren, J. Alloys Compd. 484, 837 (2009).

    Article  ADS  Google Scholar 

  30. W. W. Moses, S. E. Derenzo, M. J. Weber, A. K. Ray-Chaudhuri, and F. Cerrina, J. Lumin. 59, 89 (1994).

    Article  Google Scholar 

  31. H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, J. Appl. Phys. 108, 033519(6) (2010).

    ADS  Google Scholar 

  32. P. Dorenbos, J. Lumin. 122-123, 315 (2007).

    Article  Google Scholar 

  33. P. Dorenbos, E. V. D. van Loef, C. W. E. van Eijk, K. W. Krämer, and H. U. Güdel, Phys. Rev. B: Condens. Matter 68, 125108(6) (2003).

    Article  ADS  Google Scholar 

  34. K. Ichikawa, O. Aita, and K. Aoki, Phys. Rev. B: Condens. Matter 45, 3221 (1992).

    Article  ADS  Google Scholar 

  35. A. Moewes, C. Kunz, and J. Voss, Nucl. Instrum. Methods Phys. Res., Sect. A 373, 299 (1996).

    Article  ADS  Google Scholar 

  36. J. Tang, G. Xing, H. Yuan, W. Cao, L. Jing, X. Gao, L. Qu, Y. Cheng, C. Ye, Y. Zhao, Z. Chai, K. Ibrahim, H. Q, and R. Su, J. Phys. Chem. B 109, 8779 (2005).

    Article  Google Scholar 

  37. V. V. Mikhailin, Nucl. Instrum. Methods Phys. Res., Sect. A 448, 461 (2000).

    Article  ADS  Google Scholar 

  38. J. Sytsma, W. van Schaik, and G. Blasse, J. Phys. Chem. Solids 52, 419 (1991).

    Article  ADS  Google Scholar 

  39. J. M. Langer and L. V. Hong, J. Phys. C: Solid State Phys. 17, L923 (1984).

    Article  ADS  Google Scholar 

  40. A. N. Belsky, S. Klimov, E. I. Zinin, P. Martin, C. Ped- rini, and A. V. Gektin, Radiat. Eff. Defects Solids 136, 145 (1995).

    Article  ADS  Google Scholar 

  41. L. H. Brixner and G. Blasse, Chem. Phys. Lett. 157, 283 (1989).

    Article  ADS  Google Scholar 

  42. S. Shimizu, H. Ishibashi, A. Ejiri, and S. Kubota, Nucl. Instrum. Methods Phys. Res., Sect. A 486, 490 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Ogorodnikov.

Additional information

Original Russian Text © I.N. Ogorodnikov, I.N. Sedunova, V.Yu. Ivanov, L.I. Isaenko, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 10, pp. 1914–1924.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogorodnikov, I.N., Sedunova, I.N., Ivanov, V.Y. et al. Ultraviolet luminescence of Li6Gd(BO3)3: Ce crystals under selective excitation in the region of 4d → 4f transitions. Phys. Solid State 54, 2039–2050 (2012). https://doi.org/10.1134/S1063783412100277

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412100277

Keywords

Navigation