Skip to main content
Log in

Optical properties of aluminum oxide after irradiation with cobalt ions

  • Proceedings of the XXXVIII International Conference on Physics of Interaction of Charged Particles with Crystals (Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia, 2008)
  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Optical absorption of leucoosapphire and polycrystalline corund (polycor) is studied after irradiation with cobalt ions and subsequent annealing in a vacuum. The structure of states localized in the forbidden band and induced by various imperfections has a higher stability to annealing as compared to the case of implantation of other types of ions into aluminum oxide. The fan-like behavior of the dose-dependent absorption spectra is a consequence of the defect-induced disordering of crystal lattices. It is determined that intrinsic radiation-induced defects, substitutional defects, complexes containing them, and Co nanoparticles have an influence on the parameters of the focal point of the absorption spectra. The parameters of the interband and exponential absorption demonstrate the formation of a new multidefect material with a band gap width ranging from 5.3 to 5.5 eV and an absorption edge at 2.0–5.2 eV caused by the localized states of defect clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. M. Hunt and J. M. Hampikian, Acta Mater. 47(5), 1497 (1999).

    Article  CAS  Google Scholar 

  2. A. L. Stepanov, Pis’ma Zh. Tekh. Fiz. 28(20), 58 (2002) [Tech. Phys. Lett. 28, 864 (2002)].

    Google Scholar 

  3. C. D’Orleans, C. Cerruti, and C. Estournes, Nucl. Instrum. Methods Phys. Res. B 209, 316 (2003).

    Article  ADS  Google Scholar 

  4. L. G. Jacobsohn, M. E. Hawley, D. W. Cooke, et al., J. Appl. Phys. 96(8), 4444 (2004).

    Article  ADS  CAS  Google Scholar 

  5. E. Alves, C. Marques, and R. C. da Silva, Nucl. Instrum. Methods Phys. Res. B 207, 55 (2003).

    Article  ADS  CAS  Google Scholar 

  6. Zhang Yanwen, Zhang Tounghe, Lu Dian-Tong, et al., Nucl. Instrum. Methods Phys. Res. B 175–177, 737 (2001).

    Article  Google Scholar 

  7. S. K. Lazaruk, A. A. Leshok, and V. E. Borisenko, Izv. Akad. Nauk, Ser. Fiz. 67(2), 178 (2003).

    CAS  Google Scholar 

  8. C. Marques, M. M. Cruz, R. C. da Silva, and E. Alves, Nucl. Instrum. Methods Phys. Res. B 175–177, 500 (2001).

    Article  Google Scholar 

  9. I. Dezsi, I. Szucs, Cs. Fetzer, et al., J. Phys. Condens. Matter 12, 2291 (2000).

    Article  ADS  CAS  Google Scholar 

  10. A. V. Kabyshev and F. V. Konusov, Fiz. Khim. Obrab. Mater., No. 3, 21 (2005).

  11. H. Naramoto, C. W. White, and J. M. Williams, J. Appl. Phys. 54(2), 683 (1983).

    Article  ADS  CAS  Google Scholar 

  12. A. V. Kabyshev and F. V. Konusov, Poverkhnost’, No. 3, 58 (2006).

  13. C. J. McHargue, P. S. Sklad, and C. W. White, Nucl. Instrum. Methods Phys. Res. B 46(1–4), 79 (1990).

    Article  ADS  Google Scholar 

  14. A. V. Kabyshev and F. V. Konusov, Poverkhnost’, No. 4, 90 (2007) [J. Surf. Invest. 1, 229 (2007)].

  15. A. Vieira, N. P. Barradas, and E. Alves, Nucl. Instrum. Methods Phys. Res. B 190, 241 (2002).

    Article  ADS  CAS  Google Scholar 

  16. I. A. Vainshtein, A. F. Zatsepin, and V. S. Kortov, Fiz. Tverd. Tela 43(2), 237 (2001) [Phys. Solid State 43, 246 (2001)].

    Google Scholar 

  17. A. V. Kabyshev and F. V. Konusov, Izv. Vyssh. Uchebn. Zaved., Ser. Fiz., No. 2 (2007).

  18. S. K. O’Leary, S. Zukotynski, and J. M. Perz, Phys. Rev. B 52(11), 7795 (1995).

    Article  ADS  Google Scholar 

  19. V. P. Solntsev, E. G. Tsvetkov, A. I. Alimpiev, and R. I. Mashkovtsev, Phys. Chem. Miner. 31(1), 1 (2004).

    Article  ADS  CAS  Google Scholar 

  20. Yu. F. Vaksman, V. V. Pavlov, Yu. A. Nitsuk, et al., Fiz. Tekh. Poluprovodn. 40(7), 815 (2006) [Semiconductors 40, 794 (2008)].

    Google Scholar 

  21. Yuichi Morishita and Keiji Tanaka, J. Appl. Phys. 93, 999 (2003).

    Article  ADS  CAS  Google Scholar 

  22. O. N. Boksha and S. V. Grum-Grzhimailo, Investigation of the Optical Spectra of Crystals with Ions of the Iron Group at Room and Low Temperatures (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  23. A. N. Platonov, M. N. Taran, and V. S. Balitskii, Nature of the Coloring of Gems (Nedra, Moscow, 1984) [in Russian].

    Google Scholar 

  24. M. V. Klassen-Neklyudova and Kh. S. Bagdasarov, Ruby and Sapphire (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  25. D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Optic Spectra of Ions of Transition Metal Ions in Crystals (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  26. J. K. Sardar, J. B. Gruber, B. Zandi, et al., J. Appl. Phys. 91, 4846 (2002).

    Article  ADS  CAS  Google Scholar 

  27. D. S. McClure, J. Chem. Phys. 36, 2757 (1962).

    Article  ADS  CAS  Google Scholar 

  28. B. D. Evans, J. Nucl. Mater. 219, 202 (1995).

    Article  ADS  CAS  Google Scholar 

  29. F. Orapunt and S. K. O’Leary, Appl. Phys. Lett. 84, 523 (2004).

    Article  ADS  CAS  Google Scholar 

  30. J. H. D. da Silva, R. R. Campomanes, D. M. G. Leite, et al., J. Appl. Phys. 96, 7052 (2004).

    Article  ADS  Google Scholar 

  31. Kim Jae Hyun, Kim Hyojin, Kim Dojin, et al., Solid State Commun. 131, 677 (2004).

    Article  Google Scholar 

  32. Xu Fei, Xiao Zhisong, Cheng Guoan, et al., J. Beijing Norm. Univ. Natur. Sci. 36, 335 (2000).

    CAS  Google Scholar 

  33. X. Xiang, X. T. Zu, S. Zhu, et al., Nanotecnology 17, 2636 (2006).

    Article  ADS  CAS  Google Scholar 

  34. O. A. Plaksin, Y. Takeda, K. Kono, et al., Nucl. Instrum. Methods Phys. Res. B 242, 118 (2006).

    Article  ADS  CAS  Google Scholar 

  35. I. Costina and R. Franchy, Appl. Phys. Lett. 78, 4139 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Kabyshev, F.B. Konusov, 2009, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, No. 4, pp. 54–62.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabyshev, A.V., Konusov, F.B. Optical properties of aluminum oxide after irradiation with cobalt ions. J. Surf. Investig. 3, 304–312 (2009). https://doi.org/10.1134/S1027451009020256

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451009020256

Keywords

Navigation