Skip to main content
Log in

Effect of boron deficiency on photosynthesis and antioxidant responses of young tea plantlets

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Boron (B) deficiency is prevalent in the soils of tea growing regions of India. In order to investigate the physico-chemical alterations associated with B deficiency in tea ((Camellia sinensis (L.) O. Kuntze, cv. T-78) plants, young plantlets were treated with boric acid (H3BO3) at 0, 2.5, and 5 μM for 8 weeks. B-scarcity decreased the photosynthetic rate (P n), stomatal conductance (g s), and transpiration (E) alongside chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car). Superoxide anion (O ·−2 ), malondialdehyde (MDA), hydrogen peroxide (H2O2) generation and electrolyte leakage were elevated in B-deprived plants. The activities of ascorbate peroxidase (APX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6), peroxidase (POD; EC 1.11.1.7), and superoxide dismutase (SOD; EC 1.15.1.1) were increased in B-deficient plants. Simultaneously, transcripts of the antioxidant enzymes were up-regulated under B deficiency. By and large, the results suggest that B deficiency intensifies ROS generation but the antioxidant system does not provide for an adequate protection from oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

Chl:

chlorophyll

Car:

carotenoids

E :

the rate of transpiration

EST:

expressed sequence tag

g s :

stomatal conductance

NCBI:

National Center for Biotechnology Information

P n :

photosynthetic rate

POD:

peroxidase

RG:

II-rhamnogalacturonan II

RT-PCR:

reverse transcriptase-polymerase chain reaction

SOD:

superoxide dismutase

TEM:

transmission electron microscope

References

  1. Shorrocks, V.M., The Occurrence and Correction of Boron Deficiency, Plant Soil, 1997, vol. 193, pp. 121–148.

    Article  CAS  Google Scholar 

  2. Tewari, R.K., Kumar, P., and Sharma, P.N., Morphology and Oxidative Physiology of Boron-Deficient Mulberry Plants, Tree Physiol., 2010, vol. 30, pp. 68–77.

    Article  PubMed  CAS  Google Scholar 

  3. Herrera-Rodriguez, M.B., González-Fontes, A., Rexach, J., Camacho-Cristóbal, J.J., Maldonado, J.M., and Navarro-Gochicoa, M.T., Role of Boron in Vascular Plants and Response Mechanisms to Boron Stresses, Plant Stress, 2010, vol. 4, pp. 115–122.

    Google Scholar 

  4. El-Shintinawy, F., Structural and Functional Damage Caused by Boron Deficiency in Sunflower Leaves, Photosynthetica, 1999, vol. 36, pp. 565–573.

    Article  CAS  Google Scholar 

  5. Han, S., Chen, L., Jiang, H., Smith, B.R., Yang, L., and Xie, C., Boron Deficiency Decreases Growth and Photosynthesis, and Increases Starch and Hexoses in Leaves of Citrus Seedlings, J. Plant Physiol., 2008, vol. 165, pp. 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  6. Kastori, R., Plesnicr, M., Pankovic, D., and Sakac, Z., Photosynthesis, Chlorophyll Fluorescence and Soluble Carbohydrates in Sunflower Leaves as Affected by Boron Deficiency, J. Plant Nutr., 1995, vol. 18, pp. 1751–1763.

    Article  CAS  Google Scholar 

  7. Camacho-Cristóbal, J.J., Lunar, L., Lafont, F., Baumert, A., and González-Fontes, A., Boron Deficiency Causes Accumulation of Chlorogenic Acid and Caffeoyl Polyamine Conjugates in Tobacco Leaves, J. Plant Physiol., 2004, vol. 161, pp. 879–881.

    Article  PubMed  Google Scholar 

  8. Fenghui, X., Changes of Protective Enzymes and Accumulation of Polyamines Induced by Boron Deficiency in Roots of Rape Seedlings, Pedosphere, 1998, vol. 8, pp. 229–236.

    Google Scholar 

  9. Cakmak, I., Activity of Ascorbate-Dependent H2O2-Scavenging Enzymes and Leaf Chlorosis Are Enhanced in Magnesium- and Potassium-Deficient Leaves, but Not in Phosphorus-Deficient Leaves, J. Exp. Bot., 1994, vol. 45, pp. 1259–1266.

    Article  CAS  Google Scholar 

  10. Chen, L.-S., Qi, Y.-P., and Liu, X.-H., Effects of Aluminum on Light Energy Utilization and Photoprotective Systems in Citrus Leaves, Ann. Bot., 2005, vol. 96, pp. 35–41.

    Article  PubMed  CAS  Google Scholar 

  11. Cakmak, I. and Römheld, V., Boron Deficiency-Induced Impairments of Cellular Functions in Plants, Plant Soil, 1997, vol. 193, pp. 71–83.

    Article  CAS  Google Scholar 

  12. Mondal, T.K., “Tea”, Tropical Crop, vol. 3, Devey, M.R., Pua, P., Eds., Amsterdam: Elsevier, 2006, pp. 45–65.

    Google Scholar 

  13. Das, A., Das, S., and Mondal, T.K., Analysis of Differentially Expressed Transcriptome of Tea (Camellia assamica L.) Root under Drought Stress, Plant Mol. Biol. Rep., 2012, vol. 30. pp. 1088–1101.

    Article  CAS  Google Scholar 

  14. Mukhopadyay, M., Bantawa, P., Das, A., Sarkar, B., Bera, B., Ghosh, P.D., and Mondal, T.K., Changes of Growth, Photosynthesis and Alteration of Leaf Antioxidative Defence System of Tea (Camellia sinensis (L.) O. Kuntze) Seedling under Aluminum Stress, Biometal, 2012, vol. 25. pp. 1141–1154.

    Article  CAS  Google Scholar 

  15. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  16. Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero-Puertas, M.C., and del Rio, L.A., Cadmium-Induced Changes in the Growth and Oxidative Metabolism of Pea Plants, J. Exp. Bot., 2001, vol. 52, pp. 2115–2126.

    PubMed  CAS  Google Scholar 

  17. Lichtenthaler, H.K., Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  18. Jordan, C.M. and de Vay, J.E., Lysosome Disruption Associated with Hyper-Sensitive Reaction in the Potato-Phytophthora infestans Host-Parasite Interaction, Physiol. Plant Pathol., 1990, vol. 36, pp. 221–236.

    Article  CAS  Google Scholar 

  19. Sagisaka, S., The Occurrence of Peroxide in a Perennial Plant Populus gelrica, Plant Physiol., 1976, vol. 57, pp. 308–309.

    Article  PubMed  CAS  Google Scholar 

  20. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubar, Y., Yamaguchi, Y., and Shinozaki, K., Antisense Suppression of the Proline Degradation Improves Tolerance to Freezing and Salinity in Arabidopsis thaliana, FEBS Lett., 1999, vol. 461, pp. 205–210.

    Article  PubMed  CAS  Google Scholar 

  21. Nakano, Y. and Asada, K., Hydrogen Peroxide Is Scavenged by Ascorbate Specific Peroxidase in Spinach Chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.

    CAS  Google Scholar 

  22. Upadhyaya, H. and Panda, S.K., Responses of Camellia sinensis to Drought and Rehydration, Biol. Plant., 2004, vol. 48, pp. 597–600.

    Article  Google Scholar 

  23. Marschner, H., Mineral Nutrition of Higher Plants, San Diego: Academic, 1995.

    Google Scholar 

  24. Da Silva, D.H., Rossi, M.L., Boaretto, A.E., Nogueira, N.L., and Muraoka, T., Boron Affects the Growth and Ultrastructure of Castor Bean Plants, Sci. Agric., 2008, vol. 65, pp. 659–664.

    Google Scholar 

  25. Zhao, D. and Oosterhuis, D.M., Cotton Carbon Exchange, Non-Structural Carbohydrates, and Boron Distribution in Tissues during Development of Boron Deficiency, Field Crops Res., 2002, vol. 78, pp. 75–87.

    Article  Google Scholar 

  26. Sharma, P.N. and Ramchandra, T., Water Relations and Photosynthesis in Mustard Plants Subjected to Boron Deficiency, Ind. J. Plant Physiol., 1990, vol. 33, pp. 150–154.

    CAS  Google Scholar 

  27. Huang, L., Ye, Z., Bell, W.R., and Dell, B., Boron Nutrition and Chilling Tolerance of Warm Climate Crop Species, Ann. Bot., 2005, vol. 96, pp. 755–767.

    Article  PubMed  CAS  Google Scholar 

  28. Pandey, D.K. and Pandey, N., Screening of Wheat Genotypes for Their Susceptibility to Boron Deficiency, Res. Environ. Life Sci., 2008, vol. 1, pp. 37–42.

    Google Scholar 

  29. Cakmak, I., Kurz, H., and Marschner, H., Short-Term Effects of Boron, Germanium and High Light Intensity on Membrane Permeability in Boron Deficient Leaves of Sunflower, Physiol. Plant., 1995, vol. 95, pp. 11–18.

    Article  CAS  Google Scholar 

  30. Luo, Z.-B., He, X.-J., Chen, L., Tang, L., Gao, S., and Chen, F., Effects of Zinc on Growth and Antioxidant Responses in Jatropha curcas Seedlings, Int. J. Agric. Biol., 2010, vol. 12, pp. 119–124.

    CAS  Google Scholar 

  31. Wang, Y.H., Garvin, D.F., and Kochian, L.V., Rapid Induction of Regulatory and Transporter Genes in Response to Phosphorus, Potassium, and Iron Deficiencies in Tomato Roots: Evidence for Cross-Talk and Root/Rhizosphere-Mediated Signals, Plant Physiol., 2002, vol. 130, pp. 1361–1370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Mondal.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, M., Ghosh, P.D. & Mondal, T.K. Effect of boron deficiency on photosynthesis and antioxidant responses of young tea plantlets. Russ J Plant Physiol 60, 633–639 (2013). https://doi.org/10.1134/S1021443713030096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713030096

Keywords

Navigation